Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 412
Filtrar
1.
Acta Pharmaceutica Sinica ; (12): 455-463, 2024.
Artículo en Chino | WPRIM | ID: wpr-1016654

RESUMEN

Thrombus is a major factor leading to cardiovascular diseases such as myocardial infarction and stroke. Although fibrinolytic anti-thrombotic drugs have been widely used in clinical practice, they are still limited by narrow therapeutic windows, short half-lives, susceptibility to inactivation, and abnormal bleeding caused by non-targeting. Therefore, it is crucial to effectively deliver thrombolytic agents to the site of thrombus with minimal adverse effects. Based on the long blood circulation and excellent drug-loading properties of human serum albumin (HSA), we employed genetic engineering techniques to insert a functional peptide (P-selectin binding peptide, PBP) which can target the thrombus site to the N-terminus of HSA. The fusion protein was expressed using Pichia pastoris and purified by Ni-chelating affinity chromatography. After being loaded with gold nanoparticles (Au NPs), the fusion protein formed homogeneous and stable nanoparticles (named as PBP-HSA@Au) with a diameter of 17.7 ± 1.0 nm and a zeta potential of -11.3 ± 0.2 mV. Cytotoxicity and hemolysis tests demonstrated the superb biocompatibility of PBP-HSA@Au. Platelet-targeting experiments confirmed the thrombus-targeting ability conferred by the introduction of PBP into PBP-HSA@Au. Upon near-infrared ray (NIR) irradiation, PBP-HSA@Au rapidly converted light energy into heat, thereby disrupting fibrinogen and exhibiting outstanding thrombolytic efficacy. The designed HSA fusion protein delivery system provides a precise, rapid, and drug-free treatment strategy for thrombus therapy. This system is characterized by its simple design, high biocompatibility, and strong clinical applicability. All animal experiments involved in this study were carried out under the protocols approved by the Animal Experiment Ethics Committee of Jiangnan University [JN. No20230915S0301015(423)].

2.
Acta Pharmaceutica Sinica ; (12): 448-454, 2024.
Artículo en Chino | WPRIM | ID: wpr-1016649

RESUMEN

It has become an industry consensus that self-assembled nanoparticles (SAN) are formed by molecular recognition of chemical components in traditional Chinese medicine during the decoction process. The insoluble components in the decoction are mostly in the form of nanoparticles, which can improve the problem of poor water solubility. However, the transfer rate of these insoluble components in the decoction is still very low, which limits the efficacy of the drug. This study aimed to refine the traditional decoction self-assembly phenomenon. The self-assembled nanoparticles were constructed by micro-precipitation method (MP-SAN), and characterized by particle size, zeta potential, stability index and morphology. The formation of MP-SAN and alterations in related physicochemical properties were evaluated using modern spectroscopic and thermal analysis techniques. The quality value transmitting pattern of lignan components within the MP-SAN was assessed via high performance liquid chromatography (HPLC). The MP-SAN showed sphere-like structure with uniform morphology, particle size of (245.3 ± 3.2) nm, polydispersity index (PDI) of (0.13 ± 0.03), zeta potential of (-48.9 ± 5.9) mV and stability index (SI) of (86.05% ± 2.27%). Comprehensive analyses using ultraviolet visible spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and other techniques confirmed molecular recognition between the decoction and ethanol extraction, leading to electron rearrangement under the influence of non-covalent bonding. This resulted in the formation of nanoparticles possessing superior thermal stability. As determined by HPLC, the encapsulation rates of the index components in the MP-SAN were all greater than 75% (dehydrodiconiferyl alcohol: 77.00%; herpetolide A: 78.57%; herpetrione: 94.53%), and the transfer rates were all higher than 65% (dehydrodiconiferyl alcohol: 96.01%; herpetolide A: 67.86%; herpetrione: 65.55%), which were 1.34, 1.38 and 4.81 times compared with those of the traditional decoction. In summary, this study successfully constructed the MP-SAN based on micro-precipitation method to achieve high transfer rate and high encapsulation rate of insoluble components in docoction, which provides a pharmaceutics idea for the efficient utilization of pharmacodynamic substance basis of traditional Chinese medicine.

3.
Acta Pharmaceutica Sinica B ; (6): 602-622, 2024.
Artículo en Inglés | WPRIM | ID: wpr-1011272

RESUMEN

Calcium-based biomaterials have been intensively studied in the field of drug delivery owing to their excellent biocompatibility and biodegradability. Calcium-based materials can also deliver contrast agents, which can enhance real-time imaging and exert a Ca2+-interfering therapeutic effect. Based on these characteristics, amorphous calcium carbonate (ACC), as a brunch of calcium-based biomaterials, has the potential to become a widely used biomaterial. Highly functional ACC can be either discovered in natural organisms or obtained by chemical synthesis However, the standalone presence of ACC is unstable in vivo. Additives are required to be used as stabilizers or core-shell structures formed by permeable layers or lipids with modified molecules constructed to maintain the stability of ACC until the ACC carrier reaches its destination. ACC has high chemical instability and can produce biocompatible products when exposed to an acidic condition in vivo, such as Ca2+ with an immune-regulating ability and CO2 with an imaging-enhancing ability. Owing to these characteristics, ACC has been studied for self-sacrificing templates of carrier construction, targeted delivery of oncology drugs, immunomodulation, tumor imaging, tissue engineering, and calcium supplementation. Emphasis in this paper has been placed on the origin, structural features, and multiple applications of ACC. Meanwhile, ACC faces many challenges in clinical translation, and long-term basic research is required to overcome these challenges. We hope that this study will contribute to future innovative research on ACC.

4.
Braz. j. biol ; 842024.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469305

RESUMEN

Abstract The aim of the present study is to assess the effects of selenium nanoparticles on the growth, hematology and nutrients digestibility of Labeorohita fingerlings. Fingerlings were fed with seven isocaloric sunflower meal-based diet supplemented with different concentrations of nanoparticles naming T1 to T7 (0, 0.5, 1, 1.5, 2, 2.5, and 3 mg/kg), with 5% wet body weight while chromic oxide was used as an indigestible marker. After experimentation for 90 days T3 treated group (1mg/kg -1Se-nano level) showed the best result in hematological parameters (WBCs 7.97 ×103mm-3, RBCs 2.98 ×106 mm-3 and Platelet count 67), nutrient digestibility (crude protein: 74%, ether extract: 76%, gross energy: 70%) and growth performance (weight gain 13.24 g, weight gain% 198, feed conversion ratio 1.5, survival rate 100%) as compared to the other treatment groups. Specific growth rates were found significantly higher in T5 than in other groups. The present study indicated positive effect of 1 mg/kg Se-nanoparticles on growth advancement, hematological parameters, and nutrients digestibility of L. rohita fingerlings.


Resumo O objetivo do presente estudo é avaliar os efeitos das nanopartículas de selênio no crescimento, hematologia e digestibilidade dos nutrientes de alevinos de Labeo rohita. Os alevinos foram alimentados com sete dietas isocalóricas à base de farinha de girassol suplementada com diferentes concentrações de nanopartículas, nomeando T1 a T7 (0, 0,5, 1, 1,5, 2, 2,5 e 3 mg / kg), com 5% do peso corporal úmido enquanto o óxido crômico foi usado como um marcador indigesto. Após a experimentação por 90 dias, o grupo tratado com T3 (nível 1mg / kg -1Se-nano) mostrou o melhor resultado em parâmetros hematológicos (WBCs 7,97 × 103mm-3, RBCs 2,98 × 106mm-3 e contagem de plaquetas 67), digestibilidade dos nutrientes (proteína bruta: 74%, extrato de éter: 76%, energia bruta: 70%) e desempenho de crescimento (ganho de peso 13,24 g, ganho de peso % 198, taxa de conversão alimentar 1,5, taxa de sobrevivência 100%) em comparação com os outros grupos de tratamento. As taxas de crescimento específicas foram encontradas significativamente mais altas em T5 do que em outros grupos. O presente estudo indicou efeito positivo de 1 mg / kg de nanopartículas de Se no avanço do crescimento, parâmetros hematológicos e digestibilidade de nutrientes de alevinos de L. rohita.

5.
Braz. j. biol ; 84: e253555, 2024. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1355900

RESUMEN

Abstract The aim of the present study is to assess the effects of selenium nanoparticles on the growth, hematology and nutrients digestibility of Labeorohita fingerlings. Fingerlings were fed with seven isocaloric sunflower meal-based diet supplemented with different concentrations of nanoparticles naming T1 to T7 (0, 0.5, 1, 1.5, 2, 2.5, and 3 mg/kg), with 5% wet body weight while chromic oxide was used as an indigestible marker. After experimentation for 90 days T3 treated group (1mg/kg -1Se-nano level) showed the best result in hematological parameters (WBC's 7.97 ×103mm-3, RBC's 2.98 ×106 mm-3 and Platelet count 67), nutrient digestibility (crude protein: 74%, ether extract: 76%, gross energy: 70%) and growth performance (weight gain 13.24 g, weight gain% 198, feed conversion ratio 1.5, survival rate 100%) as compared to the other treatment groups. Specific growth rates were found significantly higher in T5 than in other groups. The present study indicated positive effect of 1 mg/kg Se-nanoparticles on growth advancement, hematological parameters, and nutrients digestibility of L. rohita fingerlings.


Resumo O objetivo do presente estudo é avaliar os efeitos das nanopartículas de selênio no crescimento, hematologia e digestibilidade dos nutrientes de alevinos de Labeo rohita. Os alevinos foram alimentados com sete dietas isocalóricas à base de farinha de girassol suplementada com diferentes concentrações de nanopartículas, nomeando T1 a T7 (0, 0,5, 1, 1,5, 2, 2,5 e 3 mg / kg), com 5% do peso corporal úmido enquanto o óxido crômico foi usado como um marcador indigesto. Após a experimentação por 90 dias, o grupo tratado com T3 (nível 1mg / kg -1Se-nano) mostrou o melhor resultado em parâmetros hematológicos (WBC's 7,97 × 103mm-3, RBC's 2,98 × 106mm-3 e contagem de plaquetas 67), digestibilidade dos nutrientes (proteína bruta: 74%, extrato de éter: 76%, energia bruta: 70%) e desempenho de crescimento (ganho de peso 13,24 g, ganho de peso % 198, taxa de conversão alimentar 1,5, taxa de sobrevivência 100%) em comparação com os outros grupos de tratamento. As taxas de crescimento específicas foram encontradas significativamente mais altas em T5 do que em outros grupos. O presente estudo indicou efeito positivo de 1 mg / kg de nanopartículas de Se no avanço do crescimento, parâmetros hematológicos e digestibilidade de nutrientes de alevinos de L. rohita.


Asunto(s)
Animales , Nanopartículas , Helianthus , Nutrientes , Suplementos Dietéticos , Dieta , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales
6.
Braz. dent. j ; 34(2): 67-74, Mar.-Apr. 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS, BBO | ID: biblio-1439572

RESUMEN

Abstract The objective of this work was to evaluate the mechanical performance of Z350 resin composite modified with Bombyx mori cocoons silk nanoparticles for dental applications. Four experimental groups were analyzed G0% = Filtek Z350 resin composite (control); G1% = Filtek Z350 with 1% of silk nanoparticles; G3% = Filtek Z350 with 3% of silk nanoparticles; G5% = Filtek Z350 with 5% of silk nanoparticles. It was employed scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, 3-point flexural strength test, Knoop hardness test, and surface roughness. From 3-point flexural strength tests the control group presented the best results G0% = 113.33 MPa (±23.73). The higher flexural modulus was shown by groups G3% = 29.150 GPa (±5.191) and G5% = 34.101 GPa (±7.940), which are statistically similar. The Knoop microhardness test has shown statistical difference only among the G3% group between the top 80.78 (± 3.00) and bottom 68.80 (±3.62) and no difference between the groups. The roughness test presented no statistical difference between the groups. The incorporation of silk nanoparticles reduced the flexural strength of Z350 resin composite. The surface roughness and microhardness tests showed no changes in any of the groups studied.


Resumo O objetivo deste trabalho foi avaliar o desempenho mecânico da resina composta Z350 modificada com nanopartículas de seda Bombyx mori cocoons para aplicações odontológicas. Quatro grupos experimentais foram analisados: G0%) Resina Z350 apenas (grupo controle); G1%) Reforço com 1% de nanopartículas de seda; G3%) Reforço com 3% de nanopartículas de seda; e G5%) Reforço com 5% de nanopartículas de seda. Foi empregado microscopia eletrônica de varredura, espectroscopia de energia dispersiva de raios X, difração de raios X, teste de resistência à flexão de 3 pontos, teste de dureza Knoop e rugosidade superficial. Nos testes de resistência à flexão de 3 pontos o grupo controle apresentou melhores resultados G0% = 0.113 GPa (±0.024). O maior módulo de flexão foi demonstrado pelos grupos G3% = 29.151GPa (±5.191) e G5% = 34.102 GPa (±7.94), que são estatisticamente semelhantes. O teste de microdureza Knoop mostrou diferença estatística apenas entre o grupo G3% entre os 80.78 superiores (± 3.00) e os 68.80 inferiores (±3.62). Não há diferença entre os grupos. O teste de rugosidade não apresentou diferença estatística entre os grupos. A incorporação de nanopartículas de seda reduziu a resistência à flexão da resina composta Z350. Os testes de rugosidade superficial e microdureza não apresentaram alterações em nenhum dos grupos estudados.

7.
Braz. J. Pharm. Sci. (Online) ; 59: e22304, 2023. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1447564

RESUMEN

Abstract Vascular endothelial growth factor (VEGF) is an essential angiogenic factor in breast cancer development and metastasis. Small interfering RNAs (siRNAs) can specifically silence genes via the RNA interference pathway, therefore were investigated as cancer therapeutics. In this study, we investigated the effects of siRNAs longer than 30 base pairs (bp) loaded into chitosan nanoparticles in triple-negative breast cancer cells, compared with conventional siRNAs. 35 bp long synthetic siRNAs inhibited VEGF gene expression by 51.2% and increased apoptosis level by 1.75-fold in MDA-MB-231 cell lines. Furthermore, blank and siRNA-loaded chitosan nanoparticles induced expression of IFN-γ in breast cancer cells. These results suggest that long synthetic siRNAs can be as effective as conventional siRNAs, when introduced into cells with chitosan nanoparticles


Asunto(s)
ARN Interferente Pequeño/farmacología , Factor A de Crecimiento Endotelial Vascular/análisis , Quitosano/efectos adversos , Nanopartículas/clasificación , Neoplasias de la Mama Triple Negativas/patología , Metástasis de la Neoplasia/diagnóstico
8.
Acta Pharmaceutica Sinica ; (12): 2292-2299, 2023.
Artículo en Chino | WPRIM | ID: wpr-999127

RESUMEN

Small interfering RNA (siRNA) is the initiator of RNA interference and inhibits gene expression by targeted degradation of specific messenger RNA. siRNA-mediated gene regulation has high efficiency and specificity and exhibits great significance in the treatment of diseases. However, the naked or unmodified siRNA has poor stability, easy to degrade by nuclease, short half-life, and low intracellular delivery. As an emerging non-viral nucleic acid delivery system, ionizable lipid nanoparticles play an important role in improving the druggability of siRNA. At present, one siRNA drug based on ionizable lipid nanoparticles has been approved for the treatment of rare disease. This review introduces the research progress in ionizable lipid nanoparticles for siRNA delivery, focusing on the effect of each component of lipid nanoparticles on the efficiency of siRNA-mediated gene silencing, which provides new references for the studies on ionizable lipid nanocarriers for siRNA delivery.

9.
Acta Pharmaceutica Sinica ; (12): 2512-2521, 2023.
Artículo en Chino | WPRIM | ID: wpr-999114

RESUMEN

To investigate the crucial role of particle size in the biological effects of nanoparticles, a series of mesoporous silica nanoparticles (MSNs) were prepared with particle size gradients (50, 100, 150, 200 nm) with the traditional Stober method and adjusting the type and ratio of the silica source. The correlation between toxicity and size-caused biological effects were then further examined both in vitro and in vivo. The results indicated that the prepared MSNs had a uniform size, good dispersal, and ordered mesoporous structure. Hemolytic toxicity was found to be independent of particle size. At the cellular level, MSNs with smaller particle sizes were more readily internalized by cells, which initiated to more intense oxidative stress, therefor inducing higher cytotoxicity, and apoptosis rate. In vivo studies demonstrated that MSNs primarily accumulated in the liver and kidneys of mice. Pharmacokinetic analysis revealed that larger MSNs were eliminated more efficiently by the urinary system than smaller MSNs. The mice's body weight monitoring, blood tests, and pathological sections of major organs indicated good biocompatibility for MSNs of different sizes. Animal welfare and the animal experimental protocols were strictly consistent with related ethics regulations of Zhejiang Chinese Medical University. Overall, this study prepared MSNs with a particle size gradient to investigate the correlation between toxicity and particle size using macrophages and endothelial cells. The study also examined the biosafety of MSNs with different particle sizes in vivo and in vitro, which could help to improve the safety design strategy of MSNs for drug delivery systems.

10.
Acta Pharmaceutica Sinica B ; (6): 3892-3905, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1011155

RESUMEN

Activating humoral and cellular immunity in lymph nodes (LNs) of nanoparticle-based vaccines is critical to controlling tumors. However, how the physical properties of nanovaccine carriers orchestrate antigen capture, lymphatic delivery, antigen presentation and immune response in LNs is largely unclear. Here, we manufactured gold nanoparticles (AuNPs) with the same size but different shapes (cages, rods, and stars), and loaded tumor antigen as nanovaccines to explore their disparate characters on above four areas. Results revealed that star-shaped AuNPs captured and retained more repetitive antigen epitopes. On lymphatic delivery, both rods and star-shaped nanovaccines mainly drain into the LN follicles region while cage-shaped showed stronger paracortex retention. A surprising finding is that the star-shaped nanovaccines elicited potent humoral immunity, which is mediated by CD4+ T helper cell and follicle B cell cooperation significantly preventing tumor growth in the prophylactic study. Interestingly, cage-shaped nanovaccines preferentially presented peptide-MHC I complexes to evoke robust CD8+ T cell immunity and showed the strongest therapeutic efficacy when combined with the PD-1 checkpoint inhibitor in established tumor study. These results highlight the importance of nanoparticle shape on antigen delivery and presentation for immune response in LNs, and our findings support the notion that different design strategies are required for prophylactic and therapeutic vaccines.

11.
Acta Pharmaceutica Sinica B ; (6): 3906-3918, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1011143

RESUMEN

Alcoholic liver disease (ALD) results from continuous and heavy alcohol consumption. The current treatment strategy for ALD is based on alcohol withdrawal coupled with antioxidant drug intervention, which is a long process with poor efficacy and low patient compliance. Alcohol-induced CYP2E1 upregulation has been demonstrated as a key regulator of ALD, but CYP2E1 knockdown in humans was impractical, and pharmacological inhibition of CYP2E1 by a clinically relevant approach for treating ALD was not shown. In this study, we developed a RNAi therapeutics delivered by lipid nanoparticle, and treated mice fed on Lieber-DeCarli ethanol liquid diet weekly for up to 12 weeks. This RNAi-based inhibition of Cyp2e1 expression reduced reactive oxygen species and oxidative stress in mouse livers, and contributed to improved ALD symptoms in mice. The liver fat accumulation, hepatocyte inflammation, and fibrosis were reduced in ALD models. Therefore, this study suggested the feasibility of RNAi targeting to CYP2E1 as a potential therapeutic tool to the development of ALD.

12.
Chinese Journal of Biotechnology ; (12): 1390-1402, 2023.
Artículo en Chino | WPRIM | ID: wpr-981145

RESUMEN

Polymer nanoparticles generally refer to hydrophobic polymers-based nanoparticles, which have been extensively studied in the nanomedicine field due to their good biocompatibility, efficient long-circulation characteristics, and superior metabolic discharge patterns over other nanoparticles. Existing studies have proved that polymer nanoparticles possess unique advantages in the diagnosis and treatment of cardiovascular diseases, and have been transformed from basic researches to clinical applications, especially in the diagnosis and treatment of atherosclerosis (AS). However, the inflammatory reaction induced by polymer nanoparticles would induce the formation of foam cells and autophagy of macrophages. In addition, the variations in the mechanical microenvironment of cardiovascular diseases may cause the enrichment of polymer nanoparticles. These could possibly promote the occurrence and development of AS. Herein, this review summarized the recent application of polymer nanoparticles in the diagnosis and treatment of AS, as well as the relationship between polymer nanoparticles and AS and the associated mechanism, with the aim to facilitate the development of novel nanodrugs for the treatment of AS.


Asunto(s)
Humanos , Polímeros/química , Enfermedades Cardiovasculares , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Aterosclerosis/patología
13.
Acta Pharmaceutica Sinica ; (12): 805-814, 2023.
Artículo en Chino | WPRIM | ID: wpr-978759

RESUMEN

With the rapid development of nanotechnology, the research and development of nanomedicines have become one of the development directions of drug innovation. Nanomedicines have special physical and chemical properties, such as nanoscale effects and nanostructure effects, so they have special biological properties, which may change the pharmacokinetic profiles such as absorption and tissue distribution of drug molecules, and thus affect their safety and effectiveness. There are many special concerns on the non-clinical safety evaluation of nanomedicines at the basis of ordinary drug because of the particularity of nanomedicines. On August 25, 2021, China issued Guidance on Non-clinical Safety Evaluation for Nanomedicines(interim). This article interprets comprehensively the guidance, focuses on the key points of non-clinical safety evaluation for nanomedicines, and expounds combined with some cases, aiming to provide reference for drug researchers.

14.
Acta Pharmaceutica Sinica ; (12): 1669-1676, 2023.
Artículo en Chino | WPRIM | ID: wpr-978721

RESUMEN

As an edible eukaryotic microorganism, Saccharomyces cerevisiae has the characteristics of high safety, rapid proliferation, low cost, easy transformation, etc. It has been widely used to produce vaccines, antibodies, insulin, etc. Up to now, yeast components, such as cell wall and yeast microcapsules, have been widely used in the treatment of tumors, inflammatory virus infection, post-traumatic osteoarthritis and other diseases. Among them, the components of yeast cell membrane are relatively simple and stable, which are easy to be extracted on a large scale. Therefore, yeast cell membrane material was used to construct yeast membrane vesicle nanosystem, and its biomedical application was preliminarily explored. In this study, Saccharomyces cerevisiae membrane vesicle (SMV) was prepared by co-extrusion method, and the particle size and surface potential of SMV, drug loading and release characteristics, stability, cell safety, and in vitro therapeutic effect were investigated. The results showed that the average particle size of SMV was 185.1 nm. Curcumin and silica nanoparticles were effectively encapsulated by co-incubation and ultrasonic methods, and the characteristics of cell membrane proteins were maintained. Moreover, SMV had good stability and biocompatibility. In addition, SMV could be effectively uptaken by macrophages RAW 264.7, and curcumin loaded SMV could effectively eliminate reactive oxygen species (ROS). In conclusion, the yeast plasma membrane vesicles prepared in this study could effectively deliver curcumin drugs and encapsulate nanoparticles, and could be effectively absorbed by macrophages and effectively eliminate ROS, providing new ideas and new methods for biomedical applications of yeast membrane materials.

15.
Acta Pharmaceutica Sinica ; (12): 1245-1255, 2023.
Artículo en Chino | WPRIM | ID: wpr-978698

RESUMEN

Oral mucosal drug delivery has the advantages of rapid drug absorption, no first-pass effect and good patient compliance. However, factors such as low drug dissolution, saliva carrying the drug into the gastrointestinal tract and the existence of physiological barriers in the mucosa may affect the mucosal permeation and bioavailability of the drug. Nanotechnology applied to drug oral mucosa delivery can overcome the above disadvantages and obtain efficient absorption effect. This paper describes the physiological structure of oral mucosa and the factors affecting the absorption of drugs in oral mucosa, reviews the application of nanotechnology such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, polymer nanoparticles, polymer micelles and nanohybrid suspensions in oral mucosal drug delivery and the mechanism of promoting drug absorption, summarizes the main problems of current research, and gives an outlook on the application of nano oral mucosal drug delivery system. The main problems of current research are summarized, and the prospects for the application of nano oral mucosal drug delivery systems are discussed.

16.
Acta Pharmaceutica Sinica ; (12): 779-788, 2023.
Artículo en Chino | WPRIM | ID: wpr-965628

RESUMEN

Size and surface modification are the two key factors affecting the effect of macrophages polarization induced by superparamagnetic iron oxide nanoparticles (SPIONs). The smaller the particle size, the better the polarization effect of SPIONs. Besides, the reasonable SPIONs surface modification method can also be used to enhance the polarization effect. In this study, SPIONs was prepared by solvothermal method and optimized by Box-Benhnken center combination design and response surface method. Furthermore, astragalus polysaccharide-superparamagnetic iron oxide nanocomplex (APS-SPIONs) was successfully constructed by EDC/NHS esterification method. The structure of APS-SPIONs was confirmed by dynamic light scatter and infrared spectrometer, and the contents of iron and polysaccharide were characterized by spectrophotometry. The effect of APS-SPIONs on inducing mouse macrophages RAW264.7 polarization was investigated by flow cytometry. The RAW264.7 macrophages-HepG2 human hepatoma cancer cells Transwell co-culture system was established to investigate APS-SPIONs improve anti-tumor function of macrophages in vitro, and the proliferation activity of APS-SPIONs on RAW264.7 detected by cell counting kit-8 (CCK-8) method. The results showed that the average particle size and zeta potential of APS-SPIONs were (82.93 ± 1.47) nm and (-24.00 ± 0.47) mV. Polysaccharide and Fe content were 8.69% and 7.04%, respectively. APS-SPIONs effectively induced the polarization of RAW264.7 into M1 type in vitro, improving the anti-tumor ability of macrophages in a co-culture system, without effecting the proliferation of macrophages. Our study provides a drug development strategy and preliminary research results to educate macrophages and reshape the tumor immune microenvironment to achieve tumor-killing effects.

17.
Acta Pharmaceutica Sinica ; (12): 76-85, 2023.
Artículo en Chino | WPRIM | ID: wpr-964289

RESUMEN

Lung is susceptible to external disturbance, resulting in a variety of acute and chronic lung diseases. Functionalized nanoparticles as carriers can carry drugs through multiple biological barriers of lung into lung lesions, but there are some problems such as poor targeting and low therapeutic efficiency. As a drug carrier, membrane-coated biomimetic nanoparticles have the characteristics of immune system escape, active targeting, inflammatory chemotaxis and crossing physiological barriers due to the retention of the characteristics of the source cells. Therefore, it has been widely used in the treatment of lung diseases in recent years. In this review, the application of membrane-coated biomimetic nanoparticles in the treatment of lung diseases in the recent years was summarized and classified. Cell membrane sources include erythrocyte membrane, platelet membrane, macrophage membrane, neutrophil membrane, lung epithelial membrane, lung surfactant, endothelial membrane, cancer cell membrane, bacterial membrane, hybrid membrane and so on. The purpose of this review is to provide a new idea for treating lung diseases with membrane-coated biomimetic nanoparticles.

18.
Acta Pharmaceutica Sinica B ; (6): 1262-1273, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971769

RESUMEN

Drug resistance presents one of the major causes for the failure of cancer chemotherapy. Cancer stem-like cells (CSCs), a population of self-renewal cells with high tumorigenicity and innate chemoresistance, can survive conventional chemotherapy and generate increased resistance. Here, we develop a lipid-polymer hybrid nanoparticle for co-delivery and cell-distinct release of the differentiation-inducing agent, all-trans retinoic acid and the chemotherapeutic drug, doxorubicin to overcome the CSC-associated chemoresistance. The hybrid nanoparticles achieve differential release of the combined drugs in the CSCs and bulk tumor cells by responding to their specific intracellular signal variation. In the hypoxic CSCs, ATRA is released to induce differentiation of the CSCs, and in the differentiating CSCs with decreased chemoresistance, DOX is released upon elevation of reactive oxygen species to cause subsequent cell death. In the bulk tumor cells, the drugs are released synchronously upon the hypoxic and oxidative conditions to exert potent anticancer effect. This cell-distinct drug release enhances the synergistic therapeutic efficacy of ATRA and DOX with different anticancer mechanism. We show that treatment with the hybrid nanoparticle efficiently inhibit the tumor growth and metastasis of the CSC-enriched triple negative breast cancer in the mouse models.

19.
Acta Pharmaceutica Sinica B ; (6): 1204-1215, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971754

RESUMEN

Fluorescence-guided surgery (FGS) with tumor-targeted imaging agents, particularly those using the near-infrared wavelength, has emerged as a real-time technique to highlight the tumor location and margins during a surgical procedure. For accurate visualization of prostate cancer (PCa) boundary and lymphatic metastasis, we developed a new approach involving an efficient self-quenched near-infrared fluorescence probe, Cy-KUE-OA, with dual PCa-membrane affinity. Cy-KUE-OA specifically targeted the prostate-specific membrane antigen (PSMA), anchored into the phospholipids of the cell membrane of PCa cells and consequently showed a strong Cy7-de-quenching effect. This dual-membrane-targeting probe allowed us to detect PSMA-expressing PCa cells both in vitro and in vivo and enabled clear visualization of the tumor boundary during fluorescence-guided laparoscopic surgery in PCa mouse models. Furthermore, the high PCa preference of Cy-KUE-OA was confirmed on surgically resected patient specimens of healthy tissues, PCa, and lymph node metastases. Taken together, our results serve as a bridge between preclinical and clinical research in FGS of PCa and lay a solid foundation for further clinical research.

20.
Acta Pharmaceutica Sinica B ; (6): 967-981, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971749

RESUMEN

Platinum-based chemotherapy resistance is a key factor of poor prognosis and recurrence in hepatocellular carcinoma (HCC). Herein, RNAseq analysis revealed that elevated tubulin folding cofactor E (TBCE) expression is associated with platinum-based chemotherapy resistance. High expression of TBCE contributes to worse prognoses and earlier recurrence among liver cancer patients. Mechanistically, TBCE silencing significantly affects cytoskeleton rearrangement, which in turn increases cisplatin-induced cycle arrest and apoptosis. To develop these findings into potential therapeutic drugs, endosomal pH-responsive nanoparticles (NPs) were developed to simultaneously encapsulate TBCE siRNA and cisplatin (DDP) to reverse this phenomena. NPs (siTBCE + DDP) concurrently silenced TBCE expression, increased cell sensitivity to platinum treatment, and subsequently resulted in superior anti-tumor effects both in vitro and in vivo in orthotopic and patient-derived xenograft (PDX) models. Taken together, NP-mediated delivery and the co-treatment of siTBCE + DDP proved to be effective in reversing chemotherapy resistance of DDP in multiple tumor models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA