Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Añadir filtros








Intervalo de año
1.
Rev. colomb. anestesiol ; 51(4)dic. 2023.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1535702

RESUMEN

Introduction Anesthetists play an important role during interventional radiology procedures. Like the main operator, anesthetists may also be subject to significant radiation levels in the fluoroscopy suite. Due to its complexity, hepatic chemoembolization procedures demand high fluoroscopic times and digital subtraction angiography images, exposing patients and medical staff to high radiation doses. Objective To assess and quantify the radiation to which one anesthetist was exposed over the course of seven consecutive hepatic chemoembolization procedures, and compare it to the exposure received by the main operator. Methods Medical staff dosimetry was evaluated during seven consecutive hepatic chemoembolization procedures conducted in a private hospital in Recife (Brazil), using thermoluminiscent dosimeters placed in regions of the head and torso. Results For the seven procedures evaluated in this study, the anesthetist received, on average, absorbed doses to the glabella, left eyebrow, right eyebrow and effective dose of 142.4 ± 72 µSv, 117.3 ± 66 µSv, 137.8 ± 71 µSv and 12.4 ± 8.4 µSv, respectively. Conclusions In some cases, ocular dose and effective dose received by the anesthetist may be 4 and 4.7 times greater, respectively, when compared to the main operator. According to the results of this study, the current occupational annual dose limit to the lens of the eye of 20 mSv can be exceeded with only two hepatic chemoembolization procedures per week if adequate radiation protection conditions are not guaranteed.


Introducción El anestesiólogo desempeña un papel importante durante los procedimientos de radiología intervencionista. Al igual que el operador principal, el anestesiólogo también puede estar expuesto a niveles significativos de radiación en la sala de fluoroscopía. Debido a su complejidad, durante los procedimientos de quimioembolización hepática se deben utilizar imágenes de fluoroscopía y angiografía de sustracción digital por períodos prolongados, exponiendo a los pacientes y al personal médico a dosis elevadas de radiación. Objetivo Evaluar y cuantificar la radiación a la cual se expuso un anestesiólogo durante el transcurso de siete procedimientos consecutivos de quimioembolización hepática, y comparar con la exposición recibida por el operador principal. Métodos Evaluación de la dosimetría ocupacional durante siete procedimientos consecutivos de quimioembolización hepática realizados en un hospital privado de Recife (Brasil) por medio de dosímetros termoluminiscentes ubicados en regiones de la cabeza y el torso. Resultados Para los siete procedimientos evaluados en este estudio, el anestesiólogo recibió, en promedio, dosis absorbidas en el entrecejo, la ceja izquierda, la ceja derecha y dosis efectivas de 142,4 ± 72 µSv, 117,3 ± 66 µSv, 137,8 ± 71 µSv y 12,4 ± 8,4 µSv, respectivamente. Conclusiones En algunos casos, la dosis ocular y la dosis efectiva que recibe el anestesiólogo puede ser, respectivamente, entre 4 y 4,7 veces más alta que la que recibe el operador principal. De acuerdo con los resultados de este estudio, el límite ocupacional anual de dosis en cristalino (20 mSv) se puede superar con apenas dos procedimientos de quimioembolización hepática a la semana en caso de no garantizarse las condiciones adecuadas de protección contra la radiación.

2.
Journal of Environmental and Occupational Medicine ; (12): 571-576, 2023.
Artículo en Chino | WPRIM | ID: wpr-973649

RESUMEN

Background Individual monitoring of occupational external exposure is an essential part of the occupational health management of radiation workers, and is an important basis for the evaluation of individual absorbed dose and the diagnosis of occupational radiation diseases. Continuous participation of monitoring service providers in intercomparison is a fundamental quality assurance for routine monitoring, which can identify problems and improve them in time. Objective Taking the Laboratory of Radiation Protection in Shanghai Institute of Preventive Medicine as an example, to evaluate the performance of an individual occupational external dose monitoring system in the laboratory, identify influencing factors of the monitoring results, and provide a basis for improving the quality of daily monitoring by analyzing the process and results of a national intercomparison of individual dose monitoring. Methods According to the Testing criteria of personnel dosimetry performance for external exposure (GBZ 207-2016), and the relevant requirements of Class II (photon) inspection, a total of 20 groups of blind sample dosimeters were measured for four consecutive years from 2018 to 2021. The radiation energy source of each group was identified, and related personal dose equivalent Hp(10), the uncertainty of measurement results, and the deviation between the reported value and the reference value were calculated. The national intercomparison process and results of individual dose monitoring were also analyzed. Results The energy sources of the blind samples in the tested laboratory for four years were N100 or Cs-137. The reported dose values of the blind samples were 0.57-4.61 mSv, the combined uncertainties were 0.043-0.365 mSv, the expanded uncertainties (k=2) were 0.09-0.73 mSv, and the relative expanded uncertainties (k=2) were 13.8%-16.4%. The single-group performance ∣Pi∣ of 20 sets of blind samples in the four years was ≤0.10, the yearly comprehensive performance of 5 sets of blind samples was ≤0.10, and the yearly Q score of the test report was >15 points. The laboratory achieved excellent results in the national intercomparison of individual dose monitoring in four consecutive years, except the Q value not reaching full score. Conclusion The laboratory exhibits standardized data processing of individual dose monitoring, generates accurate and reliable results, and meets the requirements of relevant national standards; but it should continue to participate in the national intercomparison of individual dose monitoring, strengthen the angular response research of energy identified dosimeter, improve the monitoring ability of low-dose X-rays, analyze the key points of reducing the uncertainty of measurement results, and continuously improve the monitoring ability.

3.
Chinese Journal of Radiological Medicine and Protection ; (12): 456-460, 2017.
Artículo en Chino | WPRIM | ID: wpr-621000

RESUMEN

Objective To establish a method for reducing the dose to the eye lens of interventional staff,and provide the data basis for improving radiological protection measures.Methods One piece of interventional equipment coupled with conventional auxiliary protective devices and two types of common neural interventional procedures were selected to monitor 46 and 35 procedures before and after the device modification.The doses to the eye lens of staff were measured with direct-reading dosimeters for analysis of dose trends.Results After modification of the devices,the average dose to the left eye lens decreased from (9.71 ±10.86) to (3.23 ±5.59) μSv for the first operator,from (9.51 ± 12.34) to (0.68 ± 0.78) μSv for the second in cerebral angiography;whereas the dose decreased from (14.83 ± 19.13) to (4.17±4.59) for the first operator and from (14.12±21.76) to (1.23 ±1.57)μSv for the second in embolization procedure,respectively.The left eye lens doses measured before and after the modification showed significant difference (U =-2.760,-2.467,-1.967,-2.655,P <0.05).Conclusions The modification of the auxiliary radiological protective devices may effectively reduce the dose to the eye lens dose.This method was shown to be feasible for the improvement of radiological protection of interventional staff.

4.
Chinese Medical Equipment Journal ; (6): 78-81,85, 2017.
Artículo en Chino | WPRIM | ID: wpr-662521

RESUMEN

Objective To evaluate the reliability of HARSHAW-3500 thermoluminescence dosimetry system by testing its performances.Methods HARSHAW-3500 thermoluminescence dosimetry system had its performances tested and evaluated according to Verification regulation of thermoluminescence dosimetry systems used in persontal and environmental monitoring forXandgammaradiation(JJG 593-2006),Testingcriteriaofpersonneldosimetryperformanceforexternalexposure (GBZ 207-2016),Specifications for individual monitoring of occupational external exposure (GBZ 128-2016) and Thermoluminescence dosimetry systems for personal and environmental monitoring (GB/T 10264-2014),such as batch homogeneity,repeatability,linearity,incidence angle response,stability,energy response and scale factor,quantity inspection,residual dose,detection limit and etc.Results Testing results of various performance indicators proved to be within the limits according to national and industrial standards.Conclusion HARSHAW-3500 thermoluminescence dosimetry system conforms to the requirements for radiation dose measurement.It is beneficial to the improvement of quality and performance of thermoluminescence dosimetry by performances analysis and evaluation.

5.
Chinese Medical Equipment Journal ; (6): 77-80, 2017.
Artículo en Chino | WPRIM | ID: wpr-662251

RESUMEN

Objective To improve the quality of personal dose equivalent measurement by exploring optimal annealing temperature conditions.Methods Totally 60 pieces of thermoluminescent detectors were randomly and equally divided into 6 groups.The 6 groups underwent 10-min annealing under 200,220,230,240,250 or 260 ℃ respectively,and then were cooled with the same conditions and went through measurement after irradiation by the calibrated radiation source.The above operation of annealing,cooling and measurement were repeated for 10 times,and the 6 groups were compared on dispersity,sensitivity and glow curve.Results Single test proved that under 240 ℃ the dispersity,sensitivity and glow curve gained optimal results comprehensively,while repeated tests showed that the dispersity had the optimal value under 250 ℃ and the sensitivity decreased significantly as the times of annealing rose.Conclusion Annealing conditions have to be selected according to the requirements of the thermoluminescent detector.

6.
Chinese Medical Equipment Journal ; (6): 78-81,85, 2017.
Artículo en Chino | WPRIM | ID: wpr-660207

RESUMEN

Objective To evaluate the reliability of HARSHAW-3500 thermoluminescence dosimetry system by testing its performances.Methods HARSHAW-3500 thermoluminescence dosimetry system had its performances tested and evaluated according to Verification regulation of thermoluminescence dosimetry systems used in persontal and environmental monitoring forXandgammaradiation(JJG 593-2006),Testingcriteriaofpersonneldosimetryperformanceforexternalexposure (GBZ 207-2016),Specifications for individual monitoring of occupational external exposure (GBZ 128-2016) and Thermoluminescence dosimetry systems for personal and environmental monitoring (GB/T 10264-2014),such as batch homogeneity,repeatability,linearity,incidence angle response,stability,energy response and scale factor,quantity inspection,residual dose,detection limit and etc.Results Testing results of various performance indicators proved to be within the limits according to national and industrial standards.Conclusion HARSHAW-3500 thermoluminescence dosimetry system conforms to the requirements for radiation dose measurement.It is beneficial to the improvement of quality and performance of thermoluminescence dosimetry by performances analysis and evaluation.

7.
Chinese Medical Equipment Journal ; (6): 77-80, 2017.
Artículo en Chino | WPRIM | ID: wpr-659652

RESUMEN

Objective To improve the quality of personal dose equivalent measurement by exploring optimal annealing temperature conditions.Methods Totally 60 pieces of thermoluminescent detectors were randomly and equally divided into 6 groups.The 6 groups underwent 10-min annealing under 200,220,230,240,250 or 260 ℃ respectively,and then were cooled with the same conditions and went through measurement after irradiation by the calibrated radiation source.The above operation of annealing,cooling and measurement were repeated for 10 times,and the 6 groups were compared on dispersity,sensitivity and glow curve.Results Single test proved that under 240 ℃ the dispersity,sensitivity and glow curve gained optimal results comprehensively,while repeated tests showed that the dispersity had the optimal value under 250 ℃ and the sensitivity decreased significantly as the times of annealing rose.Conclusion Annealing conditions have to be selected according to the requirements of the thermoluminescent detector.

8.
Chinese Journal of Radiological Medicine and Protection ; (12): 303-307, 2016.
Artículo en Chino | WPRIM | ID: wpr-488576

RESUMEN

Objective To establish methods of measuring the eye lens dose to interventional staff,to obtain relevant dose data and to provide a scientific basis for reducing eye lens dose.Methods Two kinds of dosimeters,thermoluminescent dosimeter (TLD) and optically stimulated luminescence dosimeter (OSLD),were selected to measure the personal dose equivalent HP (3) to eye lens of occupational staff in several kinds of interventional procedures,including cardiovascular interventional procedures,cerebrovascular interventional procedures etc.Five types of Digital Subtraction Angiography (DSA) equipment were chosen in the study,including single tube equipment and double tube equipment.Results The eye lens dose HP (3) to interventional staff varied significantly with different interventional procedures.The lowest dose is shown in the coronary angiography procedure,while the highest dose shown in the cerebral stenting procedure.For the same type of interventional procedure,the eye lens dose to the primary interventionist was the highest.For same interventionist,the dose to the left eye was obviously higher than that to the right eye.In addition,the measured results of OSLD were apparently higher than that of TLD.Conclusions Both TLD and OSLD could be used to measure eye lens dose,and the ways of calibrating TLD to evaluate personal dose equivalent HP (3) were feasible.The reason of significant difference between the measured results of TLD and OSLD needs further research.

9.
Chinese Journal of Radiological Medicine and Protection ; (12): 929-934, 2016.
Artículo en Chino | WPRIM | ID: wpr-505429

RESUMEN

Objective To establish the methods for measuring the dose to occupational staff's eye lens in interventional procedures with direct-reading dosimeters,and to realize the real-time monitoring of eye lens dose and warning for high dose rate,thus providing the scientific basis of the staff radiological protection in interventional procedures.Methods Direct-reading dosimeters were calibrated with personal dose equivalent HP (3).The eye lens doses for occupational staff in different kinds of interventional procedures were measured by the devices with both single-and double X-ray tubes.The data obtained fromthe direct-reading dosimeters was compared to those obtained from TLDs.Results Direct-reading dosimeters showed good linear fitting with the calibration of HP (3),and the coefficients of variation were lower than 5%.The average eye lens HP (3) for the main operator in coronary arteriography and stent implantation in brain obtained by direct-reading dosimeters were 12.0 and 24.5 μSv,respectively,whereas those obtained by TLDs were 11.9 and 22.7 μSv,respectively.The direct-reading dosimeters gave similar t~nds as TLDs do so.The direct-reading dosimeters were able to provide eye lens HP (3) in each individual interventional procedure,and to monitor the real-time dose rate as well.Conclusions The calibration of HP (3) and the data gained by direct-reading dosimeters are reliable.Therefore,the methods for real-time measurement of eye lens dose for occupational staff in interventional procedures are successfully established.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA