Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Protein & Cell ; (12): 21-35, 2024.
Artículo en Inglés | WPRIM | ID: wpr-1010788

RESUMEN

The seat of human intelligence is the human cerebral cortex, which is responsible for our exceptional cognitive abilities. Identifying principles that lead to the development of the large-sized human cerebral cortex will shed light on what makes the human brain and species so special. The remarkable increase in the number of human cortical pyramidal neurons and the size of the human cerebral cortex is mainly because human cortical radial glial cells, primary neural stem cells in the cortex, generate cortical pyramidal neurons for more than 130 days, whereas the same process takes only about 7 days in mice. The molecular mechanisms underlying this difference are largely unknown. Here, we found that bone morphogenic protein 7 (BMP7) is expressed by increasing the number of cortical radial glial cells during mammalian evolution (mouse, ferret, monkey, and human). BMP7 expression in cortical radial glial cells promotes neurogenesis, inhibits gliogenesis, and thereby increases the length of the neurogenic period, whereas Sonic Hedgehog (SHH) signaling promotes cortical gliogenesis. We demonstrate that BMP7 signaling and SHH signaling mutually inhibit each other through regulation of GLI3 repressor formation. We propose that BMP7 drives the evolutionary expansion of the mammalian cortex by increasing the length of the neurogenic period.


Asunto(s)
Animales , Ratones , Humanos , Células Ependimogliales/metabolismo , Proteínas Hedgehog/metabolismo , Hurones/metabolismo , Corteza Cerebral , Neurogénesis , Mamíferos/metabolismo , Neuroglía/metabolismo , Proteína Morfogenética Ósea 7/metabolismo
2.
Chinese Medical Journal ; (24): 1839-1847, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1007525

RESUMEN

BACKGROUND@#Perturbations in bone marrow mesenchymal stem cell (BMSC) differentiation play an important role in steroid-induced osteonecrosis of the femoral head (SONFH). At present, studies on SONFH concentrate upon the balance within BMSC osteogenic and adipogenic differentiation. However, BMSC apoptosis as well as proliferation are important prerequisites in their differentiation. The hedgehog (HH) signaling pathway regulates bone cell apoptosis. Baicalin (BA), a well-known compound in traditional Chinese medicine, can affect the proliferation and apoptosis of numerous cell types via HH signaling. However, the potential role and mechanisms of BA on BMSCs are unclear. Thus, we aimed to explore the role of BA in dexamethasone (Dex)-induced BMSC apoptosis in this study.@*METHODS@#Primary BMSCs were treated with 10 -6 mol/L Dex alone or with 5.0 μmol/L, 10.0 μmol/L, or 50.0 μmol/L BA for 24 hours followed by co-treatment with 5.0 μmol/L, 10.0 μmol/L, or 50.0 μmol/L BA and 10 -6 mol/L Dex. Cell viability was assayed through the Cell Counting Kit-8 (CCK-8). Cell apoptosis was evaluated using Annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining followed by flow cytometry. The imaging and counting, respectively, of Hochest 33342/PI-stained cells were used to assess the morphological characteristics and proportion of apoptotic cells. To quantify the apoptosis-related proteins (e.g., apoptosis regulator BAX [Bax], B-cell lymphoma 2 [Bcl-2], caspase-3, and cleaved caspase-3) and HH signaling pathway proteins, western blotting was used. A HH-signaling pathway inhibitor was used to demonstrate that BA exerts its anti-apoptotic effects via the HH signaling pathway.@*RESULTS@#The results of CCK-8, Hoechst 33342/PI-staining, and flow cytometry showed that BA did not significantly promote cell proliferation (CCK-8: 0 μmol/L, 100%; 2.5 μmol/L, 98.58%; 5.0 μmol/L, 95.18%; 10.0 μmol/L, 98.11%; 50.0 μmol/L, 99.38%, F   =  2.33, P   >  0.05), but it did attenuate the effect of Dex on apoptosis (Hoechst 33342/PI-staining: Dex+ 50.0 μmol/L BA, 12.27% vs. Dex, 39.27%, t  = 20.62; flow cytometry: Dex + 50.0 μmol/L BA, 12.68% vs. Dex, 37.43%, t  = 11.56; Both P  < 0.05). The results of western blotting analysis showed that BA reversed Dex-induced apoptosis by activating the HH signaling pathway, which down-regulated the expression of Bax, cleaved-caspase 3, and suppressor of fused (SUFU) while up-regulating Bcl-2, sonic hedgehog (SHH), and zinc finger protein GLI-1 (GLI-1) expression (Bax/Bcl-2: Dex+ 50.0 μmol/L BA, 1.09 vs. Dex, 2.76, t  = 35.12; cleaved caspase-3/caspase-3: Dex + 50.0 μmol/L BA, 0.38 vs . Dex, 0.73, t  = 10.62; SHH: Dex + 50.0 μmol/L BA, 0.50 vs . Dex, 0.12, t  = 34.01; SUFU: Dex+ 50.0 μmol/L BA, 0.75 vs . Dex, 1.19, t  = 10.78; GLI-1: Dex+ 50.0 μmol/L BA, 0.40 vs . Dex, 0.11, t  = 30.68. All P  < 0.05).@*CONCLUSIONS@#BA antagonizes Dex-induced apoptosis of human BMSCs by activating the HH signaling pathway. It is a potential candidate for preventing SONFH.


Asunto(s)
Humanos , Proteínas Hedgehog/metabolismo , Proteína X Asociada a bcl-2 , Caspasa 3/metabolismo , Transducción de Señal/fisiología , Apoptosis , Proteínas Reguladoras de la Apoptosis/farmacología , Dexametasona/farmacología , Células Madre Mesenquimatosas/metabolismo , Células de la Médula Ósea
3.
Chinese Journal of Burns ; (6): 195-200, 2022.
Artículo en Chino | WPRIM | ID: wpr-935995

RESUMEN

The damage of sweat glands in patients with extensive deep burns results in the loss of thermoregulation, which seriously affects the quality of life of patients. At present, there are many researches on the repair of sweat gland function, but the mechanism of human sweat gland development has not been fully clarified. More and more studies have shown that the cascaded pathways of Wnt/β-catenin, ecto- dysplasin A/ectodysplasin A receptor/nuclear factor-κB, sonic hedgehog, and forkhead box transcription factor jointly affect the development of sweat glands, and it has been reported that the cascaded signaling pathways can be used to achieve the reconstruction of sweat adenoid cells in vitro. This article reviews the signaling pathways that affect the development of sweat glands and their involvement in the reconstruction of sweat adenoid cells in vitro.


Asunto(s)
Humanos , Tonsila Faríngea/metabolismo , Proteínas Hedgehog/metabolismo , Calidad de Vida , Transducción de Señal , Sudor/metabolismo , Glándulas Sudoríparas/fisiología
4.
China Journal of Chinese Materia Medica ; (24): 2400-2408, 2022.
Artículo en Chino | WPRIM | ID: wpr-928119

RESUMEN

Traditional Chinese medicine has unique advantages in the treatment of degenerative bone and joint diseases, and its widely used in clinical practice. In recent years, many scholars have conducted a large number of basic studies on the delay of intervertebral disc degeneration by herbal compound and monomeric components from different perspectives. In order to further elucidate its mechanism of action, this paper summarizes the in vivo and in vitro experimental studies conducted at the level of both herbal compound and single components, respectively, in order to provide references for the basic research on the treatment of lumbar intervertebral disc degeneration by Chinese medicine. A summary shows that commonly used herbal compound prescriptions include both classical prescriptions such as Duhuo Jisheng Decoction, as well as clinical experience prescriptions such as Yiqi Huoxue Recipe. Angelicae Sinensis Radix, Chuanxiong Rhizoma, Rehmanniae Radix Praeparata, Achyranthis Bidentatae Radix, and Eucommiae Cortex were used most frequently. Tonic for deficiency and blood stasis activators were used most frequently. The most utilized monomeric components include icariin, ginsenoside Re, salvianolic acid B and aucubin. The main molecular mechanisms by which herbal compound and monomeric components delay of lumbar intervertebral disc degeneration include improving the intervertebral disc microenvironment, promoting the synthesis of aggregated proteoglycans and type Ⅱ collagen in the intervertebral disc, reducing the degradation of the extracellular matrix, and inhibiting apoptosis in the nucleus pulposus cells, etc. The main signaling pathways involved include Wnt/β-catenin signaling pathway, MAPK-related signaling pathway, mTOR signaling pathway, Fas/FasL signaling pathway, PI3 K/Akt signaling pathway, NF-κB signaling pathway, JAK/STAT signaling pathway, and hedgehog signaling pathway, etc.


Asunto(s)
Humanos , China , Medicamentos Herbarios Chinos/uso terapéutico , Proteínas Hedgehog/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Vía de Señalización Wnt
5.
Int. j. morphol ; 36(2): 693-698, jun. 2018. graf
Artículo en Español | LILACS | ID: biblio-954173

RESUMEN

Sonic hedgehog (Shh) es un morfógeno esencial para el desarrollo de diversas estructuras, tales como notocorda, placa del piso del tubo neural, miembros, entre otros. Se buscó determinar la inmunolocalización de Shh en embriones y fetos de ratón. Para ello, se eutanasiaron 10 ratones gestantes (Mus musculus) BALB/c, un grupo de 5 animales a los 12,5 días post-coito (dpc), y otro grupo a los 17,5 dpc. Los embriones y fetos obtenidos fueron fijados en formalina al 10 % tamponada en PBS e incluidos en paraplast. Se realizaron cortes transversales seriados. Se utilizó anticuerpo policlonal Shh (Santa Cruz Biotechnology, H-160, conejo), dilución 1:100. Se identificó y describió la inmunolocalización de las muestras marcadas positivamente. La expresión de Shh en los embriones de 12,5 dpc fue inmunopositiva en notocorda, placa del piso del tubo neural, precartílago de radio y ulna, y prácticamente todos los epitelios: bronquial, intestinal, vejiga y uretra. En la etapa fetal, a los 17,5 dpc la inmunopositividad desaparece en el cartílago a excepción de zonas de osificación, disminuye en la epidermis pero aparece en folículos pilosos. La mucosa intestinal se ha diferenciado en segmentos, mostrando una inmunotinción mayor a nivel de las vellosidades intestinales. Shh actúa en distintos estadios del periodo gestacional, siendo clave en la diferenciación de distintas estructuras. En etapas embrionaria, es vital en la formación del sistema nervioso, organogénesis y formación de miembros, por lo que su expresión se encuentra en estas zonas. Sin embargo, en la etapa fetal la expresión cambia a estructuras de mayor especialización como folículo piloso y vellosidades intestinales.


Sonic hedgehog (Shh) is an essential morphogen for the development of various structures, such as notochord, neural tube floor plate, limbs, among others. We sought to determine the immunolocalization of Shh in embryos and mouse fetuses. To do this, 10 pregnant mice (Mus musculus) BALB /c were euthanized, a group of 5 animals at 12.5 days postcoitus (dpc), and another group at 17.5 dpc. Embryos and fetuses obtained were fixed in 10 % formalin buffered in PBS and embedded in paraplast. Serial cross sections were made. Polyclonal antibody Shh (Santa Cruz Biotechnology, H-160, rabbit), dilution 1:100 was used. The immunolocalization of the positively labeled samples was identified and described. Shh expression in 12.5 dpc embryos was immunopositive in notochord, neural tube floor plate, radius precartilage and ulna, and practically all epithelia: bronchial, intestinal, bladder and urethra. In the fetal stage, at 17.5 dpc the immunopositivity disappears in the cartilage except for areas of ossification, decreases in the epidermis but appears in hair follicles. The intestinal mucosa has differentiated into segments, showing greater immunostaining at the level of the intestinal villi. Shh acts in different stages of the gestational period, being key in the differentiation of different structures. In embryonic stages, it is vital in the formation of the nervous system, organogenesis and formation of limbs, so its expression is found in these areas. However, in the fetal stage the expression changes to more specialized structures such as hair follicles and intestinal villi.


Asunto(s)
Animales , Femenino , Ratones , Organogénesis/fisiología , Proteínas Hedgehog/metabolismo , Desarrollo Embrionario y Fetal , Inmunohistoquímica , Embrión de Mamíferos , Ratones Endogámicos BALB C
6.
Indian J Exp Biol ; 2013 Mar; 51(3): 201-207
Artículo en Inglés | IMSEAR | ID: sea-147583

RESUMEN

In the experimental group (shh inhibited group), there were significant decreases in the expression of Oct4, Nanog, Shh, GATA4, Brachyury and Goosecoid, while increases were observed for TAT and Pdx1. The expression of Sox17 did not differ between two control and experimental groups. In experimental group, the amount of GSC positive cells was somehow lower but it seems that there was no difference for Sox17. Shh inhibition induces ESCs to differentiate toward definitive endoderm by committing mesendodermal lineages.


Asunto(s)
Animales , Diferenciación Celular , Línea Celular , Linaje de la Célula , Cartilla de ADN , Ditizona/farmacología , Células Madre Embrionarias/citología , Endodermo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Mesodermo/metabolismo , Ratones , Microscopía Fluorescente , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
Biol. Res ; 44(1): 63-67, 2011. ilus
Artículo en Inglés | LILACS | ID: lil-591865

RESUMEN

Proliferation and cell fate determination in the developing embryo are extrinsically regulated by multiple interactions among diverse secreted factors, such as Sonic Hedgehog (SHh), which act in a concentration-dependent manner. The fact that SHh is secreted as a lipid-modified protein suggests the existence of a mechanism to regulate its movement across embryonic fields. We have previously shown that heparan sulfate proteoglycans (HSPGs) are required for SHh binding and signalling. However, it was not determined which specific HSPG was responsible for these functions. Here we evaluated the contribution of perlecan on SHh localization and activity. To understand the mechanism of action of perlecan at the cellular level, we studied the role of perlecan-SHh interaction in SHh activity using both cell culture and biochemical assays. Our findings show that perlecan is a crucial anchor and modulator of SHh activity acting as an extracellular positive regulator of SHh.


Asunto(s)
Animales , Humanos , Ratones , Ratas , Encéfalo/efectos de los fármacos , Proteoglicanos de Heparán Sulfato/farmacología , Transducción de Señal/efectos de los fármacos , Encéfalo/metabolismo , Cromatografía en Gel , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Proteoglicanos de Heparán Sulfato/aislamiento & purificación , Proteoglicanos de Heparán Sulfato/metabolismo , Proteoglicanos de Heparán Sulfato/fisiología , Inmunohistoquímica
8.
Int. j. odontostomatol. (Print) ; 1(1): 7-15, jul. 2007. ilus
Artículo en Español | LILACS | ID: lil-530276

RESUMEN

La regulación del crecimiento y desarrollo cráneo-facial está controlada por una serie de interacciones celulares y con la matriz extracelular que estimulan los procesos de proliferación y diferenciación. De fundamental importancia es la cresta neural, una población de células especializadas de células progenitoras que generan los huesos, cartílagos y tejido conectivo de la región. La mandíbula se forma por osificación membranosa en el mesénquima del primer arco faríngeo, pero desarrolla cartílagos secundarios como centros de crecimiento en el cóndilo, en el proceso coronoídeo, en el ángulo mandibular y en la sutura intermaxilar (sínfisis). Estos cartílagos difieren en su origen, su estructura histológica y su respuesta a factores hormonales, metabólicos y mecánicos con respecto a los cartílagos de los huesos largos. Debido a que las células proliferativas son mesenquimáticas y no cartilaginosas, los mecanismos celulares y moleculares que regulan el crecimiento en los cartílagos secundarios, son todavía muy poco conocidos. Los productos génicos BMP (proteina morfogenética de hueso), Ihh (Indian hedgehog), FGF (factor de crecimiento de fibroblastos), Sox-9 y VEGF (factor de crecimiento vascular endotelial) son de gran importancia en el crecimiento mandibular. Este trabajo resume la información reciente acerca de los factores de crecimiento y factores de transcripción, potenciales reguladores del proceso de osificación membranosa y del crecimiento de los cartílagos secundarios de la mandíbula.


Regulation of growth and craniofacial development is controlled by the interactions of cells with each other and with the extracellular environment through signal transduction pathways that control the differentiation process by stimulating proliferation or causing cell death. Of fundamental importance to mandibular development is the neural crest, a specialized population of stem and progenitor cells which generate the bone, cartilage and conjunctive tissue of the first branchial arch. The mandible arises by intramembranous ossification, but develops secondary cartilages as growth centers. Secondary cartilages of the mandible arise in the condylar process, in the coronoid process, angular process of the mandible, and in the intermandibular suture (mental symphysis). These are different, not only in their origins, but in their histologic organization and in their response to hormonal and mechanical factors with articular cartilages of long bones. Because the cells that divide to effect growth and adaptation in these cartilages are of perichondrial/periosteal rather than chondrogenic origin, the cellular and molecular mechanisms that regulate their growth are only beginning to be understood. The main differences of secondary cartilages from cartilages of the limbs and cranial base are, that condylar condroblasts arise from undifferentiated conjuntive cells and the appearance of vascular canals that cross cartilage perpendicularly and connect with the ossification zone. Collagen type I seems to be more important in this process than collagen type II. BMP signaling maintains regulatory roles in skeletons and skeletal growth. Indian hedgehog, Sox-9, fibroblastic growth factor (FGF) and vascular endothelial growth factor (VEGF), are also important in mandibular growth. This article summarizes information regarding growth factors and transcription proteins that are potential growth regulators in these secondary cartilages.


Asunto(s)
Humanos , Mandíbula/crecimiento & desarrollo , Condrogénesis , Cartílago/crecimiento & desarrollo , Cóndilo Mandibular/crecimiento & desarrollo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Osteogénesis , Proteínas Hedgehog/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA