Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
J. appl. oral sci ; 27: e20180075, 2019. graf
Artículo en Inglés | LILACS, BBO | ID: biblio-975874

RESUMEN

Abstract Currently, there is no consensus in terms of defining the minimum radiant exposure values necessary for achieving adequate properties of composite resin. In addition, the long-term influence that radiant exposure has on the properties of composite resins is still questionable. Objective: The objective of this study was to evaluate the effect of radiant exposure and UV accelerated aging on the physico-chemical and mechanical properties of micro-hybrid and nanofilled composite resins. Material and Methods: A nanofilled (Filtek Supreme; 3M ESPE) and a micro-hybrid composite resin (Filtek Z250; 3M ESPE) were investigated under different radiant exposures (3.75, 9, and 24 J/cm2) and UV accelerated aging protocols (0, 500, 1000, and 1500 aging hours). The degree of conversion (DC), flexural strength (FS), modulus (M), water sorption (WS), and solubility (WL) were evaluated. The results obtained were analyzed using two-way ANOVA and Tukey's test. Comparisons were performed using a significance level of α=0.05. Results: The DC, FS, and M were found to be significantly influenced by both radiant exposure and accelerated aging time. The DC and EM increased with radiant exposure in the no-aging group (0-hour aging) for both micro-hybrid and nanofilled composites, whereas no correlation was found after accelerated aging protocols. WS and WL of micro-hybrid and nanofilled composite resins were scarcely affected by radiant exposure (p>0.05), whereas they were significantly reduced by accelerated aging (p<0.001). Conclusions: Although increasing radiant exposure affected the degree of conversion and mechanical properties of micro-hybrid and nanofilled composites, no influence on the hydrolytic degradation of the material was observed. In contrast, UV accelerated aging affected both the physico-chemical and mechanical properties of the composites.


Asunto(s)
Rayos Ultravioleta , Resinas Compuestas/efectos de la radiación , Resinas Compuestas/química , Dosis de Radiación , Valores de Referencia , Solubilidad , Propiedades de Superficie/efectos de la radiación , Factores de Tiempo , Ensayo de Materiales , Agua/química , Microscopía Electrónica de Rastreo , Análisis de Varianza , Espectroscopía Infrarroja por Transformada de Fourier , Transición de Fase/efectos de la radiación , Luces de Curación Dental , Procesos Fotoquímicos/efectos de la radiación , Polimerizacion/efectos de los fármacos , Resistencia Flexional/efectos de la radiación
2.
J. appl. oral sci ; 26: e20170528, 2018. tab, graf
Artículo en Inglés | LILACS, BBO | ID: biblio-954505

RESUMEN

Abstract High levels of shrinkage stress caused by volumetric variations during the activation process are one of the main problems in the practical application of composite resins. Objective The aim of this study is to reduce the shrinkage stress and minimize the effects caused by composite resin volumetric variation due to the photopolymerization. In this way, this work proposes a systematic study to determine the optimal dimming function to be applied to light curing processes. Material and Methods The study was performed by applying mathematical techniques to the optimization of nonlinear objective functions. The effectiveness of the dimming function was evaluated by monitoring the polymerization shrinkage stress during the curing process of five brands/models of composites. This monitoring was performed on a universal testing machine using two steel bases coupled in the arms of the machine where the resin was inserted and polymerized. The quality of the composites cured by the proposed method was analyzed and compared with the conventional photoactivation method by experiments to determine their degree of conversion (DC). Absorbance measurements were performed using Fourier-transform infrared spectroscopy (FT-IR). A T-test was performed on DC results to compare the photoactivation techniques. We also used scanning electron microscopy (SEM) to analyze in-vitro the adhesion interface of the resin in human teeth. Results Our results showed that the use of the optimal dimming function, named as exponential, resulted in the significant reduction of the shrinkage stress (~36.88% ±6.56 when compared with the conventional method) without affecting the DC (t=0.86, p-value=0.44). The SEM analyses show that the proposed process can minimize or even eliminate adhesion failures between the tooth and the resin in dental restorations. Conclusion The results from this study can promote the improvement of the composite resin light curing process by the minimization of polymerization shrinkage effects, given an operational standardization of the photoactivation process.


Asunto(s)
Resinas Compuestas/efectos de la radiación , Resinas Compuestas/química , Curación por Luz de Adhesivos Dentales/métodos , Polimerizacion/efectos de la radiación , Valores de Referencia , Estrés Mecánico , Factores de Tiempo , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Adhesividad , Espectroscopía Infrarroja por Transformada de Fourier , Análisis del Estrés Dental , Transición de Fase/efectos de la radiación
3.
J. appl. oral sci ; 25(4): 381-386, July-Aug. 2017. tab, graf
Artículo en Inglés | LILACS, BBO | ID: biblio-893641

RESUMEN

Abstract Simplified dentin-bonding systems are clinically employed for most adhesive procedures, and they are prone to hydrolytic degradation. Objective This study aimed to investigate the effect of laser diode irradiation on the degree of conversion (DC), water sorption (WS), and water solubility (WSB) of these bonding systems in an attempt to improve their physico-mechanical resistance. Material and Methods Two bonding agents were tested: a two-step total-etch system [Adper™ Single Bond 2, 3M ESPE (SB)] and a universal system [Adper™ Single Bond Universal, 3M ESPE (SU)]. Square-shaped specimens were prepared and assigned into 4 groups (n=5): SB and SU (control groups - no laser irradiation) and SB-L and SU-L [SB and SU laser (L) - irradiated groups]. DC was assessed using Fourier transform infrared spectroscopy with attenuated total reflectance. Additional uncured resin samples (≈3.0 µL, n=5) of each adhesive were also scanned for final DC calculation. For WS/WSB tests, similar specimens (n=10) were prepared and measured by monitoring the mass changes after dehydration/water storage cycles. For both tests, adhesive fluids were dropped into standardized Teflon molds (6.0×6.0×1.0 mm), irradiated with a 970-nm laser diode, and then polymerized with an LED-curing unit (1 W/cm2). Results Laser irradiation immediately before photopolymerization increased the DC (%) of the tested adhesives: SB-L>SB>SU-L>SU. For WS/WSB (μg/mm3), only the dentin bonding system (DBS) was a significant factor (p<0.05): SB>SU. Conclusion Irradiation with a laser diode improved the degree of conversion of all tested simplified dentin bonding systems, with no impact on water sorption and solubility.


Asunto(s)
Recubrimientos Dentinarios/efectos de la radiación , Láseres de Semiconductores , Polimerizacion/efectos de la radiación , Valores de Referencia , Solubilidad/efectos de la radiación , Propiedades de Superficie/efectos de la radiación , Reproducibilidad de los Resultados , Recubrimientos Dentinarios/química , Espectroscopía Infrarroja por Transformada de Fourier , Estadísticas no Paramétricas , Cementos Dentales/efectos de la radiación , Cementos Dentales/química , Transición de Fase/efectos de la radiación , Curación por Luz de Adhesivos Dentales/métodos , Luces de Curación Dental , Procesos Fotoquímicos/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA