Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
International Journal of Oral Science ; (4): 4-4, 2024.
Artículo en Inglés | WPRIM | ID: wpr-1010717

RESUMEN

Oral diseases, such as periodontitis, salivary gland diseases, and oral cancers, significantly challenge health conditions due to their detrimental effects on patient's digestive functions, pronunciation, and esthetic demands. Delayed diagnosis and non-targeted treatment profoundly influence patients' prognosis and quality of life. The exploration of innovative approaches for early detection and precise treatment represents a promising frontier in oral medicine. Exosomes, which are characterized as nanometer-sized extracellular vesicles, are secreted by virtually all types of cells. As the research continues, the complex roles of these intracellular-derived extracellular vesicles in biological processes have gradually unfolded. Exosomes have attracted attention as valuable diagnostic and therapeutic tools for their ability to transfer abundant biological cargos and their intricate involvement in multiple cellular functions. In this review, we provide an overview of the recent applications of exosomes within the field of oral diseases, focusing on inflammation-related bone diseases and oral squamous cell carcinomas. We characterize the exosome alterations and demonstrate their potential applications as biomarkers for early diagnosis, highlighting their roles as indicators in multiple oral diseases. We also summarize the promising applications of exosomes in targeted therapy and proposed future directions for the use of exosomes in clinical treatment.


Asunto(s)
Humanos , Exosomas , Calidad de Vida , Vesículas Extracelulares , Biomarcadores , Comunicación Celular , Neoplasias de la Boca
2.
Biol. Res ; 57: 1-1, 2024. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1550056

RESUMEN

BACKGROUND: Tumor-derived small extracellular vesicles (sEVs) can promote tumorigenic and metastatic capacities in less aggressive recipient cells mainly through the biomolecules in their cargo. However, despite recent advances, the specific molecules orchestrating these changes are not completely defined. Lactadherin is a secreted 0protein typically found in the milk fat globule membrane. Its overexpression has been associated with increased tumorigenesis and metastasis in breast cancer (BC) and other tumors. However, neither its presence in sEVs secreted by BC cells, nor its role in sEV-mediated intercellular communication have been described. The present study focused on the role of lactadherin-containing sEVs from metastatic MDA-MB-231 triple-negative BC (TNBC) cells (sEV-MDA231) in the promotion of pro-metastatic capacities in non-tumorigenic and non-metastatic recipient cells in vitro, as well as their pro-metastatic role in a murine model of peritoneal carcinomatosis. RESULTS: We show that lactadherin is present in sEVs secreted by BC cells and it is higher in sEV-MDA231 compared with the other BC cell-secreted sEVs measured through ELISA. Incubation of non-metastatic recipient cells with sEV- MDA231 increases their migration and, to some extent, their tumoroid formation capacity but not their anchorage-independent growth. Remarkably, lactadherin blockade in sEV-MDA231 results in a significant decrease of those sEV-mediated changes in vitro. Similarly, intraperitoneally treatment of mice with MDA-MB-231 BC cells and sEV-MDA231 greatly increase the formation of malignant ascites and tumor micronodules, effects that were significantly inhibited when lactadherin was previously blocked in those sEV-MDA231. CONCLUSIONS: As to our knowledge, our study provides the first evidence on the role of lactadherin in metastatic BC cell-secreted sEVs as promoter of: (i) metastatic capacities in less aggressive recipient cells, and ii) the formation of malignant ascites and metastatic tumor nodules. These results increase our understanding on the role of lactadherin in sEVs as promoter of metastatic capacities which can be used as a therapeutic option for BC and other malignancies.


Asunto(s)
Humanos , Animales , Ratones , Ascitis , Vesículas Extracelulares , Transporte Biológico , Comunicación Celular , Línea Celular Tumoral , Carcinogénesis
3.
Acta Academiae Medicinae Sinicae ; (6): 821-826, 2023.
Artículo en Chino | WPRIM | ID: wpr-1008136

RESUMEN

Extracellular vesicles (EV),nanoscale vesicles encapsulated by phospholipid bilayers,are rich in biological molecules such as nucleic acids,metabolites,proteins,and lipids derived from parental cells.They are mainly involved in intercellular communication,signal transmission,and material transport and affect the functions of target cells.Ovulation disorders account for a higher proportion in the factors causing infertility which demonstrates increasing incidence year by year.Non-coding RNAs participate in a series of physiological and pathological processes of follicular development,playing a key role in female infertility.This review systematically introduces the types and biological roles of EV and elaborates on the regulation of follicular development from the effects of EV and non-coding RNAs on granulosa cell function,oocyte maturation,ovulation,luteal formation,and steroid hormone synthesis,providing a new idea and a breakthrough point for the diagnosis and treatment of infertility.


Asunto(s)
Femenino , Humanos , Oogénesis/fisiología , Células de la Granulosa , Vesículas Extracelulares/fisiología , Comunicación Celular , ARN no Traducido , Infertilidad
4.
Chinese Critical Care Medicine ; (12): 999-1003, 2023.
Artículo en Chino | WPRIM | ID: wpr-1010899

RESUMEN

Sepsis is a life-threatening organ dysfunction caused by infection that lead to dysregulation of the host response. Sepsis and septic shock with a high mortality threaten human health at present, which are important medical and health problems. Early diagnosis and treatment decision-making for sepsis and septic shock still need to be improved. Exosomes are extracellular vesicles with a diameter of 30-150 nm formed by the fusion of multi-vesicle bodies and cell membranes. Exosomes can effectively transport a variety of bioactive substances such as proteins, lipids, RNA, DNA, and participate in the regulation of inflammatory response, immune response, infection and other pathophysiological processes. In recent years, exosomes have become one of the important methods for the diagnosis and treatment of systemic inflammatory diseases. This article will focus on the basic and clinical research of sepsis, and focus on the research progress of exosomes in the diagnosis and targeted therapy of sepsis.


Asunto(s)
Humanos , Choque Séptico/terapia , Exosomas/metabolismo , Sepsis/terapia , Vesículas Extracelulares/metabolismo , ARN/metabolismo
5.
Frontiers of Medicine ; (4): 1186-1203, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1010815

RESUMEN

Through bioinformatics predictions, we identified that GTF2I and FAT1 were downregulated in thyroid carcinoma (TC). Further, Pearson's correlation coefficient revealed a positive correlation between GTF2I expression and FAT1 expression. Therefore, we selected them for this present study, where the effects of bone marrow mesenchymal stem cell-derived EVs (BMSDs-EVs) enriched with GTF2I were evaluated on the epithelial-to-mesenchymal transition (EMT) and stemness maintenance in TC. The under-expression of GTF2I and FAT1 was validated in TC cell lines. Ectopically expressed GTF2I and FAT1 were found to augment malignant phenotypes of TC cells, EMT, and stemness maintenance. Mechanistic studies revealed that GTF2I bound to the promoter region of FAT1 and consequently upregulated its expression. MSC-EVs could shuttle GTF2I into TPC-1 cells, where GTF2I inhibited TC malignant phenotypes, EMT, and stemness maintenance by increasing the expression of FAT1 and facilitating the FAT1-mediated CDK4/FOXM1 downregulation. In vivo experiments confirmed that silencing of GTF2I accelerated tumor growth in nude mice. Taken together, our work suggests that GTF2I transferred by MSC-EVs confer antioncogenic effects through the FAT1/CDK4/FOXM1 axis and may be used as a promising biomarker for TC treatment.


Asunto(s)
Ratones , Animales , Línea Celular Tumoral , Proliferación Celular , Ratones Desnudos , Transición Epitelial-Mesenquimal , Neoplasias de la Tiroides/patología , Vesículas Extracelulares/patología , Células Madre Mesenquimatosas , Factores de Transcripción TFIII/metabolismo , Células Madre Neoplásicas/patología
6.
International Journal of Oral Science ; (4): 51-51, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1010706

RESUMEN

Periodontitis is caused by overactive osteoclast activity that results in the loss of periodontal supporting tissue and mesenchymal stem cells (MSCs) are essential for periodontal regeneration. However, the hypoxic periodontal microenvironment during periodontitis induces the apoptosis of MSCs. Apoptotic bodies (ABs) are the major product of apoptotic cells and have been attracting increased attention as potential mediators for periodontitis treatment, thus we investigated the effects of ABs derived from MSCs on periodontitis. MSCs were derived from bone marrows of mice and were cultured under hypoxic conditions for 72 h, after which ABs were isolated from the culture supernatant using a multi-filtration system. The results demonstrate that ABs derived from MSCs inhibited osteoclast differentiation and alveolar bone resorption. miRNA array analysis showed that miR-223-3p is highly enriched in those ABs and is critical for their therapeutic effects. Targetscan and luciferase activity results confirmed that Itgb1 is targeted by miR-223-3p, which interferes with the function of osteoclasts. Additionally, DC-STAMP is a key regulator that mediates membrane infusion. ABs and pre-osteoclasts expressed high levels of DC-STAMP on their membranes, which mediates the engulfment of ABs by pre-osteoclasts. ABs with knock-down of DC-STAMP failed to be engulfed by pre-osteoclasts. Collectively, MSC-derived ABs are targeted to be engulfed by pre-osteoclasts via DC-STAMP, which rescued alveolar bone loss by transferring miR-223-3p to osteoclasts, which in turn led to the attenuation of their differentiation and bone resorption. These results suggest that MSC-derived ABs are promising therapeutic agents for the treatment of periodontitis.


Asunto(s)
Humanos , Osteoclastos , Pérdida de Hueso Alveolar/terapia , Diferenciación Celular , MicroARNs , Periodontitis/terapia , Vesículas Extracelulares , Apoptosis , Células Madre Mesenquimatosas
7.
International Journal of Oral Science ; (4): 32-32, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1010687

RESUMEN

Carcinoma-associated fibroblasts (CAFs) are the main cellular components of the tumor microenvironment and promote cancer progression by modifying the extracellular matrix (ECM). The tumor-associated ECM is characterized by collagen crosslinking catalyzed by lysyl oxidase (LOX). Small extracellular vesicles (sEVs) mediate cell-cell communication. However, the interactions between sEVs and the ECM remain unclear. Here, we demonstrated that sEVs released from oral squamous cell carcinoma (OSCC)-derived CAFs induce collagen crosslinking, thereby promoting epithelial-mesenchymal transition (EMT). CAF sEVs preferably bound to the ECM rather than being taken up by fibroblasts and induced collagen crosslinking, and a LOX inhibitor or blocking antibody suppressed this effect. Active LOX (αLOX), but not the LOX precursor, was enriched in CAF sEVs and interacted with periostin, fibronectin, and bone morphogenetic protein-1 on the surface of sEVs. CAF sEV-associated integrin α2β1 mediated the binding of CAF sEVs to collagen I, and blocking integrin α2β1 inhibited collagen crosslinking by interfering with CAF sEV binding to collagen I. CAF sEV-induced collagen crosslinking promoted the EMT of OSCC through FAK/paxillin/YAP pathway. Taken together, these findings reveal a novel role of CAF sEVs in tumor ECM remodeling, suggesting a critical mechanism for CAF-induced EMT of cancer cells.


Asunto(s)
Humanos , Paxillin/metabolismo , Proteína-Lisina 6-Oxidasa/metabolismo , Carcinoma de Células Escamosas/patología , Transición Epitelial-Mesenquimal , Integrina alfa2beta1/metabolismo , Neoplasias de la Boca/patología , Colágeno/metabolismo , Fibroblastos , Vesículas Extracelulares/metabolismo , Línea Celular Tumoral , Microambiente Tumoral
8.
International Journal of Oral Science ; (4): 7-7, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971595

RESUMEN

Severe muscle injury is hard to heal and always results in a poor prognosis. Recent studies found that extracellular vesicle-based therapy has promising prospects for regeneration medicine, however, whether extracellular vesicles have therapeutic effects on severe muscle injury is still unknown. Herein, we extracted apoptotic extracellular vesicles derived from mesenchymal stem cells (MSCs-ApoEVs) to treat cardiotoxin induced tibialis anterior (TA) injury and found that MSCs-ApoEVs promoted muscles regeneration and increased the proportion of multinucleated cells. Besides that, we also found that apoptosis was synchronized during myoblasts fusion and MSCs-ApoEVs promoted the apoptosis ratio as well as the fusion index of myoblasts. Furthermore, we revealed that MSCs-ApoEVs increased the relative level of creatine during myoblasts fusion, which was released via activated Pannexin 1 channel. Moreover, we also found that activated Pannexin 1 channel was highly expressed on the membrane of myoblasts-derived ApoEVs (Myo-ApoEVs) instead of apoptotic myoblasts, and creatine was the pivotal metabolite involved in myoblasts fusion. Collectively, our findings firstly revealed that MSCs-ApoEVs can promote muscle regeneration and elucidated that the new function of ApoEVs as passing inter-cell messages through releasing metabolites from activated Pannexin 1 channel, which will provide new evidence for extracellular vesicles-based therapy as well as improving the understanding of new functions of extracellular vesicles.


Asunto(s)
Creatina/metabolismo , Vesículas Extracelulares , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Regeneración , Conexinas/metabolismo
9.
Chinese Journal of Burns ; (6): 85-90, 2023.
Artículo en Chino | WPRIM | ID: wpr-971155

RESUMEN

Wound healing involves complex pathophysiological mechanism, among which angiogenesis is considered as one of the key steps in wound healing, and promoting wound angiogenesis can accelerate wound healing. In recent years, mesenchymal stem cell-derived extracellular vesicles have been proven to produce equivalent effects of wound healing promotion comparable to stem cell therapy, with the advantages of low antigenicity and high biocompatibility. The specific mechanism by which extracellular vesicles facilitate wound healing is still not fully understood and is thought to involve all stages of wound healing. This article focuses on the possible mechanism of extracellular vesicles of adipose-derived mesenchymal stem cells in promoting wound angiogenesis, so as to provide ideas for further study on the mechanism of extracellular vesicles to promote wound healing.


Asunto(s)
Cicatrización de Heridas/fisiología , Células Madre Mesenquimatosas , Vesículas Extracelulares , Trasplante de Células Madre
10.
Journal of Central South University(Medical Sciences) ; (12): 771-781, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982347

RESUMEN

Exosomes are a class of extracellular vesicles with a structure of lipid bilayer-membrane. In the central nervous system (CNS), exosomes can be secreted from both neurons and glial cells. Exosomes released into the extracellular matrix can freely cross the blood-brain barrier and function as crucial carriers of cellular communication and substance exchange in the CNS. Exosomes play a key role in the pathological process of mental disorders such as schizophrenia, depression, and bipolar disorder, and they have the potential to be used as a targeted carrier of antipsychotic medications. Exosomes are likely to become a new tool in the future to aid in the early prevention, accurate diagnosis, and effective treatment for people with mental disorders.


Asunto(s)
Humanos , Exosomas/fisiología , Vesículas Extracelulares/fisiología , Sistema Nervioso Central , Trastornos Mentales , Barrera Hematoencefálica
11.
Chinese Journal of Hepatology ; (12): 556-560, 2023.
Artículo en Chino | WPRIM | ID: wpr-986169

RESUMEN

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) transport and transmit intercellular information and play an essential role in physiological and pathological processes. MSC-EVs, MSC-EVs-microRNA, and genetically modified MSC-EVs are involved in the onset and progression of different liver diseases and play a role in reducing liver cell damage, promoting liver cell regeneration, inhibiting liver fibrosis, regulating liver immunity, alleviating liver oxidative stress, inhibiting liver cancer occurrence, and others. Hence, it will replace MSCs as a research hotspot for cell-free therapy. This article reviews the research progress of MSC-EVs in liver diseases and provides a new basis for cell-free therapy of clinical liver diseases.


Asunto(s)
Humanos , Vesículas Extracelulares , MicroARNs/genética , Neoplasias Hepáticas , Células Madre Mesenquimatosas
12.
Journal of Experimental Hematology ; (6): 1247-1251, 2023.
Artículo en Chino | WPRIM | ID: wpr-1009981

RESUMEN

Mesenchymal stem cells (MSCs) have been officially approved in many countries to treat graft-versus-host disease, autoimmune disorders and those associated with tissue regeneration after hematopoietic stem cell transplantation. Studies in recent years have confirmed that MSC acts mainly through paracrine mechanism, in which extracellular vesicles secreted by MSC (MSC-EV) play a central role. MSC-EV has overwhelming advantages over MSC itself in the setting of adverse effects in clinical application, indicating that MSC-EV might take the place of its parent cells to be a potentially therapeutic tool for "cell-free therapy". The pharmaceutical properties of MSC-EV largely depend upon the practical and optimal techniques including large-scale expansion of MSC, the modification of MSC based on the indications and the in vivo dynamic features of MSC-EV, and the methods for preparing and harvesting large amounts of MSC-EV. The recent progresses on the issues above will be briefly reviewed.


Asunto(s)
Humanos , Vesículas Extracelulares , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas , Preparaciones Farmacéuticas
13.
Chinese Journal of Cellular and Molecular Immunology ; (12): 1069-1073, 2023.
Artículo en Chino | WPRIM | ID: wpr-1009456

RESUMEN

Objective To establish an efficient method for isolating migrasomes from RAW264.7 macrophages and identifying these isolated migrasomes. Methods Scanning electron microscopy was used to observe the morphological characteristics of migrasomes produced by RAW264.7 cells. A 0.45 μm filter was employed for reverse filtration and elution to isolate the migrasomes. The morphological characteristics of the migrasomes were then observed using transmission electron microscopy. Western blot analysis was performed to determine the expression of characteristic markers of the migrasomes. The RNA carried by the migrasomes was analysed by using LabChip bioanalyzer. Results Scanning electron microscopy revealed that the migrasomes, with membranous structures, were attached to the tip or bifurcation of the retraction fiber formed in the tail of RAW264.7 cells. Transmission electron microscopy showed that the isolated migrasomes had a typical oval vesicle-like structure with wrinkled membrane surfaces. Western blot analysis confirmed the expression of the characteristic markers phosphatidylinositol glycan anchor biosynthesis class K (PIGK), epidermal growth factor domain-specific O-linked N-acetylglucosamine transferase (EOGT) and tetraspanin 4 (TSPAN4) in the migrasomes, while the EV (extracellular vesicle) markers tumor susceptibility gene 101 (TSG101) and Arabidopsis homolog of apoptosis-linked gene 2-interacting protein X (ALIX) were not detected. Furthermore, the isolated migrasomes were found to be rich in small RNA, which were approximately 25-200 nt in length. Conclusion A method for the extraction of well-structured and high quality migrasomes from macrophages is established.


Asunto(s)
Vesículas Extracelulares , Microscopía Electrónica de Transmisión , ARN , Macrófagos
14.
International Journal of Oral Science ; (4): 36-36, 2022.
Artículo en Inglés | WPRIM | ID: wpr-939855

RESUMEN

Tumor volume increases continuously in the advanced stage, and aside from the self-renewal of tumor cells, whether the oncogenic transformation of surrounding normal cells is involved in this process is currently unclear. Here, we show that oral squamous cell carcinoma (OSCC)-derived small extracellular vesicles (sEVs) promote the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of normal epithelial cells but delay their apoptosis. In addition, nuclear-cytoplasmic invaginations and multiple nucleoli are observed in sEV-treated normal cells, both of which are typical characteristics of premalignant lesions of OSCC. Mechanistically, miR-let-7c in OSCC-derived sEVs is transferred to normal epithelial cells, leading to the transcriptional inhibition of p53 and inactivation of the p53/PTEN pathway. In summary, we demonstrate that OSCC-derived sEVs promote the precancerous transformation of normal epithelial cells, in which the miR-let-7c/p53/PTEN pathway plays an important role. Our findings reveal that cancer cells can corrupt normal epithelial cells through sEVs, which provides new insight into the progression of OSCC.


Asunto(s)
Humanos , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transformación Celular Neoplásica , Regulación hacia Abajo , Células Epiteliales/metabolismo , Vesículas Extracelulares/patología , MicroARNs/metabolismo , Neoplasias de la Boca/patología , Fosfohidrolasa PTEN/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
15.
Journal of Experimental Hematology ; (6): 955-958, 2022.
Artículo en Chino | WPRIM | ID: wpr-939715

RESUMEN

Mesenchymal stem cells (MSC) have been widely used in tissue regeneration and treatment graft versus host disease (GVHD) and immune diseases due to their self-renewal, multi-differentiation and immunoregulatory potential. However, more and more scholars begin to put weight on the MSC -derived extracellular vesicles (MSC-EV) for its regulation of inflammation and immunity. MSC-EV can activate the relevant signal pathways and regulate the function and biological behaviors of cells via acting on target cells and mediating communication between cells. MSC-EV has important potential clinical applications for its powerful immunomodulatory and hematopoietic regulatory functions. It is considered as a potential therapeutic tool to treat autoimmune diseases and GVHD. This paper reviewed the immunomodulatory activity of MSC-EV as well as the research progress of MSC-EV in hematopoietic stem cell transplantation, and discussed its potential clinical applications in the future.


Asunto(s)
Humanos , Diferenciación Celular , Vesículas Extracelulares/trasplante , Enfermedad Injerto contra Huésped/metabolismo , Trasplante de Células Madre Hematopoyéticas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas
16.
Chinese Journal of Biotechnology ; (12): 1462-1474, 2022.
Artículo en Chino | WPRIM | ID: wpr-927793

RESUMEN

Extracellular vesicles (EVs), also known as membrane vesicles, are vesicular bodies secreted by eukaryotic cells and bacteria. EVs can carry proteins, DNA, RNA, and various metabolites for the exchange and transmission of substances between cells. They play contents-dependent physiological functions, such as delivering nutrients, participating in immune response, and treating cancers. Currently, most studies focus on the exploration of vesicles secreted by eukaryotic cells and gram-negative bacteria, while few studies focus on gram-positive bacteria. This review summarized the production, content composition, physiological function, and engineering of EVs secreted by gram-positive bacteria, and prospected future perspectives in this area.


Asunto(s)
Bacterias/metabolismo , Vesículas Extracelulares/metabolismo , Bacterias Gramnegativas , Bacterias Grampositivas/metabolismo , Proteínas/metabolismo
17.
Acta Physiologica Sinica ; (6): 67-72, 2022.
Artículo en Chino | WPRIM | ID: wpr-927582

RESUMEN

Extracellular vesicles (EVs) are lipid bilayer-enclosed structures containing diverse bioactive cargoes that play a major role in intercellular communication in both physiological and pathological conditions. Currently, the field of EV-based therapy has been rapidly growing, and two main therapeutic uses of EVs can be surmised: (i) exploiting stem cell-derived EVs as therapeutic agents; and (ii) employing EVs as natural therapeutic vectors for drug delivery. This review will discuss the recent advances in EV-based therapy in the treatment of renal disease.


Asunto(s)
Humanos , Comunicación Celular , Sistemas de Liberación de Medicamentos , Vesículas Extracelulares , Enfermedades Renales/terapia
18.
International Journal of Oral Science ; (4): 2-2, 2022.
Artículo en Inglés | WPRIM | ID: wpr-929129

RESUMEN

Dental stem cells (DSCs), an important source of mesenchymal stem cells (MSCs), can be easily obtained by minimally invasive procedures and have been used for the treatment of various diseases. Classic paradigm attributed the mechanism of their therapeutic action to direct cell differentiation after targeted migration, while contemporary insights into indirect paracrine effect opened new avenues for the mystery of their actual low engraftment and differentiation ability in vivo. As critical paracrine effectors, DSC-derived extracellular vesicles (DSC-EVs) are being increasingly linked to the positive effects of DSCs by an evolving body of in vivo studies. Carrying bioactive contents and presenting therapeutic potential in certain diseases, DSC-EVs have been introduced as promising treatments. Here, we systematically review the latest in vivo evidence that supports the therapeutic effects of DSC-EVs with mechanistic studies. In addition, current challenges and future directions for the clinical translation of DSC-EVs are also highlighted to call for more attentions to the (I) distinguishing features of DSC-EVs compared with other types of MSC-EVs, (II) heterogeneity among different subtypes of DSC-derived EVs, (III) action modes of DSC-EVs, (IV) standardization for eligible DSC-EVs and (V) safety guarantee for the clinical application of DSC-EVs. The present review would provide valuable insights into the emerging opportunities of DSC-EVs in future clinical applications.


Asunto(s)
Diferenciación Celular , Vesículas Extracelulares/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo
19.
Chinese Journal of Burns ; (6): 393-399, 2022.
Artículo en Chino | WPRIM | ID: wpr-936025

RESUMEN

Extracellular vesicles are nanoparticles secreted by most eukaryotic cells and play important roles in material transport and information transmission between cells, involved in inflammation, angiogenesis, antigen presentation, cell apoptosis, cell differentiation, and other biological processes. The culture supernatant of mesenchymal stem cells is rich in extracellular vesicles, and the extracellular vesicles can regulate the formation of new blood vessels, a key step in wound healing and tissue repair. The persistence of diabetic ulcers is closely related to the blocked formation of wound vascular network. This article reviews the role of extracellular vesicles derived from mesenchymal stem cells in promoting angiogenesis of diabetic ulcers, in order to provide a new idea for the treatment of diabetic ulcers.


Asunto(s)
Humanos , Complicaciones de la Diabetes , Diabetes Mellitus , Vesículas Extracelulares , Células Madre Mesenquimatosas , Neovascularización Patológica , Úlcera , Cicatrización de Heridas/fisiología
20.
Biol. Res ; 55: 35-35, 2022. ilus
Artículo en Inglés | LILACS | ID: biblio-1429901

RESUMEN

Extracellular vesicles (EVs) are naturally released membrane vesicles that act as carriers of proteins and RNAs for intercellular communication. With various biomolecules and specific ligands, EV has represented a novel form of information transfer, which possesses extremely outstanding efficiency and specificity compared to the classical signal transduction. In addition, EV has extended the concept of signal transduction to intercellular aspect by working as the collection of extracellular information. Therefore, the functions of EVs have been extensively characterized and EVs exhibit an exciting prospect for clinical applications. However, the biogenesis of EVs and, in particular, the regulation of this process by extracellular signals, which are essential to conduct further studies and support optimal utility, remain unclear. Here, we review the current understanding of the biogenesis of EVs, focus on the regulation of this process by extracellular signals and discuss their therapeutic value.


Asunto(s)
Vesículas Extracelulares/metabolismo , Transporte Biológico , ARN/metabolismo , Transducción de Señal , Comunicación Celular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA