Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Article Dans Anglais | LILACS, VETINDEX | ID: biblio-1484526

Résumé

The hemolytic activity of skin secretions obtained by stimulating the frog Kaloula pulchra hainana with diethyl ether was tested using human, cattle, rabbit, and chicken erythrocytes. The skin secretions had a significant concentration-dependent hemolytic effect on erythrocytes. The hemolytic activity of the skin secretions was studied in the presence of osmotic protectants (polyethylene glycols and carbohydrates), cations (Mg2+, Ca2+, Ba2+, Cu2+, and K+), or antioxidants (ascorbic acid, reduced glutathione, and cysteine). Results Depending on their molecular mass, osmotic protectants effectively inhibited hemolysis. The inhibition of skin hemolysis was observed after treatment with polyethylene glycols (1000, 3400, and 6000 Da). Among divalent cations, only 1 mM Cu2+ markedly inhibited hemolytic activity. Antioxidant compounds slightly reduced the hemolytic activity. Conclusions The results suggested that skin secretions of K. pulchra hainana induce a pore-forming mechanism to form pores with a diameter of 1.36-2.0 nm rather than causing oxidative damage to the erythrocyte membrane.


Sujets)
Animaux , Amphibiens/classification , Oxydation Biologique , Sécrétions corporelles , Bufo rana , Hémolyse/physiologie
2.
J. venom. anim. toxins incl. trop. dis ; 19: 9-9, maio 2013. ilus, tab
Article Dans Anglais | LILACS | ID: lil-686619

Résumé

Background: Previous works had shown that scorpion venom induced neurotransmitter elevation and an inflammatory response associated with various anatomo-pathological modifications. The most dangerous scorpions species in Algeria responsible for these effects are Androctonus australis hector (Aah) and Androctonus amoreuxi (Aam). Results: Comparison of the physiopathological effects induced by the two venoms showed differences in the kinetic of cytokine release and in lung injury. The lung edema was only observed in response to Aah venom and it was correlated with cell infiltration. In order to better understand the involved mechanism in inflammatory response, we used two antagonists, atropine (non-selective muscarinic antagonist) and propranolol (ß adrenergic antagonist), which lead to a decrease of cell infiltration but has no effect on edema forming. Conclusion: These results suggest another pathway in the development of lung injury following envenomation with Aam or Aah venom.(AU)


Sujets)
Animaux , Mâle , Femelle , Peau/métabolisme , Bufo rana , Hémolyse/physiologie , Amphibiens/physiologie , Dosage de l'activité hémolytique du complément , Technique des plaques d'hémolyse/méthodes , Osmorégulation
SÉLECTION CITATIONS
Détails de la recherche