Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 13 de 13
Filtre
1.
Kosin Medical Journal ; : 271-277, 2022.
Article Dans Anglais | WPRIM | ID: wpr-968296

Résumé

Research using experimental animals has substantially contributed to advances in science and medicine. Animal experiments are nearly essential for biomedical research and development efforts. Because many animals are sacrificed, researchers should consider the welfare of experimental animals and related ethical issues, along with the successful results of their experiments. This review introduces the criteria that should be considered in terms of experimental animal ethics, based on the principles of the 3 R’s: replacement, representing careful consideration of the need for animal experiments; reduction, representing the use of the minimal number of animals to obtain meaningful experimental results; and refinement, representing continuous effects to find alternative methods to reduce pain and distress in experimental animals. Based on these principles, the following points should be considered when planning experiments: the necessity of animal experiments; alternatives to animal experiments; the relevance of the species and numbers of experimental animals; appropriate assessment and management of pain; the proper usage of sedatives, painkillers, and anesthesia; and valid timing for humane endpoints and euthanasia. These criteria are beneficial for both experimental animals and researchers because careful handling to ensure experimental animal welfare guarantees that scientific research will yield convincing, repeatable, and accurate results.

2.
Anatomy & Cell Biology ; : 20-27, 2022.
Article Dans Anglais | WPRIM | ID: wpr-925392

Résumé

Experimental autoimmune uveitis (EAU), an animal model of human uveitis, is characterized by infiltration of autoimmune T cells in the uvea as well as in the retina of susceptible animals. EAU is induced by the immunization of uveitogenic antigens, including either retinal soluble-antigen or interphotoreceptor retinoid-binding proteins, in Lewis rats. The pathogenesis of EAU in rats involves the proliferation of autoimmune T cells in peripheral lymphoid tissues and breakdown of the blood-retinal barrier, primarily in the uvea and retina, finally inducing visual dysfunction. In this review, we describe recent EAU studies to facilitate the design of a therapeutic strategy through the interruption of uveitogenic factors during the course of EAU, which will be helpful for controlling human uveitis.

3.
Experimental Neurobiology ; : 308-317, 2021.
Article Dans Anglais | WPRIM | ID: wpr-898355

Résumé

Experimental autoimmune uveitis (EAU) is an animal model of human autoimmune uveitis that is characterized by the infiltration of autoimmune T cells with concurrent increases in pro-inflammatory cytokines and reactive oxygen species. This study aimed to assess whether betaine regulates the progression of EAU in Lewis rats. EAU was induced via immunization with the interphotoreceptor retinoid-binding protein (IRBP) and oral administration of either a vehicle or betaine (100 mg/kg) for 9 consecutive days. Spleens, blood, and retinas were sampled from the experimental rats at the time of sacrifice and used for the T cell proliferation assay, serological analysis, real-time polymerase chain reaction, and immunohistochemistry. The T cell proliferation assay revealed that betaine had little effect on the proliferation of splenic T cells against the IRBP antigen in an in vitro assay on day 9 post-immunization. The serological analysis showed that the level of serum superoxide dismutase increased in the betainetreated group compared with that in the vehicle-treated group. The anti-inflammatory effect of betaine was confirmed by the downregulation of pro-inflammation-related molecules, including vascular cell adhesion molecule 1 and interleukin-1β in the retinas of rats with EAU. The histopathological findings agreed with those of ionized calcium-binding adaptor molecule 1 immunohistochemistry, further verifying that inflammation in the retina and ciliary bodies was significantly suppressed in the betaine-treated group compared with the vehicle-treated group. Results of the present study suggest that betaine is involved in mitigating EAU through anti-oxidation and anti-inflammatory activities.

4.
Experimental Neurobiology ; : 308-317, 2021.
Article Dans Anglais | WPRIM | ID: wpr-890651

Résumé

Experimental autoimmune uveitis (EAU) is an animal model of human autoimmune uveitis that is characterized by the infiltration of autoimmune T cells with concurrent increases in pro-inflammatory cytokines and reactive oxygen species. This study aimed to assess whether betaine regulates the progression of EAU in Lewis rats. EAU was induced via immunization with the interphotoreceptor retinoid-binding protein (IRBP) and oral administration of either a vehicle or betaine (100 mg/kg) for 9 consecutive days. Spleens, blood, and retinas were sampled from the experimental rats at the time of sacrifice and used for the T cell proliferation assay, serological analysis, real-time polymerase chain reaction, and immunohistochemistry. The T cell proliferation assay revealed that betaine had little effect on the proliferation of splenic T cells against the IRBP antigen in an in vitro assay on day 9 post-immunization. The serological analysis showed that the level of serum superoxide dismutase increased in the betainetreated group compared with that in the vehicle-treated group. The anti-inflammatory effect of betaine was confirmed by the downregulation of pro-inflammation-related molecules, including vascular cell adhesion molecule 1 and interleukin-1β in the retinas of rats with EAU. The histopathological findings agreed with those of ionized calcium-binding adaptor molecule 1 immunohistochemistry, further verifying that inflammation in the retina and ciliary bodies was significantly suppressed in the betaine-treated group compared with the vehicle-treated group. Results of the present study suggest that betaine is involved in mitigating EAU through anti-oxidation and anti-inflammatory activities.

7.
Experimental Neurobiology ; : 74-84, 2019.
Article Dans Anglais | WPRIM | ID: wpr-739529

Résumé

Olfactory dysfunction occurs in multiple sclerosis in humans, as well as in an animal model of experimental autoimmune encephalomyelitis (EAE). The aim of this study was to analyze differentially expressed genes (DEGs) in olfactory bulb of EAE-affected mice by next generation sequencing, with a particular focus on changes in olfaction-related signals. EAE was induced in C57BL/6 mice following immunization with myelin oligodendrocyte glycoprotein and adjuvant. Inflammatory lesions were identified in the olfactory bulbs as well as in the spinal cord of immunized mice. Analysis of DEGs in the olfactory bulb of EAE-affected mice revealed that 44 genes were upregulated (and which were primarily related to inflammatory mediators), while 519 genes were downregulated; among the latter, olfactory marker protein and stomatin-like 3, which have been linked to olfactory signal transduction, were significantly downregulated (log2 [fold change] >1 and p-value < 0.05). These findings suggest that inflammation in the olfactory bulb of EAE-affected mice is associated with the downregulation of some olfactory signal transduction genes, particularly olfactory marker protein and stomatin-like 3, which may lead to olfactory dysfunction in an animal model of human multiple sclerosis.


Sujets)
Animaux , Humains , Souris , Régulation négative , Encéphalomyélite auto-immune expérimentale , Expression des gènes , Immunisation , Inflammation , Modèles animaux , Sclérose en plaques , Glycoprotéine MOG , Bulbe olfactif , Protéine marqueur olfactif , Transduction du signal , Moelle spinale , Transcriptome
8.
Anatomy & Cell Biology ; : 292-298, 2018.
Article Dans Anglais | WPRIM | ID: wpr-718950

Résumé

Experimental autoimmune encephalomyelitis (EAE) is a T-cell-mediated autoimmune central nervous system disease characterized by inflammation with oxidative stress. The aim of this study was to evaluate an anti-inflammatory effect of Ishige okamurae on EAE-induced paralysis in rats. An ethanolic extract of I. okamurae significantly delayed the first onset and reduced the duration and severity of hind-limb paralysis. The neuropathological and immunohistochemical findings in the spinal cord were in agreement with these clinical results. T-cell proliferation assay revealed that the ethyl-acetate fraction of I. okamurae suppressed the proliferation of myelin basic protein reactive T cells from EAE affected rats. Flow cytometric analysis showed TCRαβ+ T cells was significantly reduced in the spleen of EAE rats with I. okamurae treatment with concurrent decrease of inflammatory mediators including tumor necrosis factor-α and cyclooxygenase-2. Collectively, it is postulated that I. okamurae ameliorates EAE paralysis with suppression of T-cell proliferation as well as decrease of pro-inflammatory mediators as far as rat EAE is concerned.


Sujets)
Animaux , Rats , Système nerveux central , Cyclooxygenase 2 , Encéphalomyélite auto-immune expérimentale , Éthanol , Inflammation , Protéine basique de la myéline , Nécrose , Stress oxydatif , Paralysie , Moelle spinale , Rate , Lymphocytes T
9.
Anatomy & Cell Biology ; : 207-213, 2017.
Article Dans Anglais | WPRIM | ID: wpr-50231

Résumé

Glycogen synthase kinase (GSK)-3β and related enzymes are associated with various forms of neuroinflammation, including spinal cord injury (SCI). Our aim was to evaluate whether lithium, a non-selective inhibitor of GSK-3β, ameliorated SCI progression, and also to analyze whether lithium affected the expression levels of two representative GSK-3β–associated molecules, nuclear factor erythroid 2-related factor-2 (Nrf-2) and heme oxygenase-1 (HO-1) (a target gene of Nrf-2). Intraperitoneal lithium chloride (80 mg/kg/day for 3 days) significantly improved locomotor function at 8 days post-injury (DPI); this was maintained until 14 DPI (P<0.05). Western blotting showed significantly increased phosphorylation of GSK-3β (Ser9), Nrf-2, and the Nrf-2 target HO-1 in the spinal cords of lithium-treated animals. Fewer neuropathological changes (e.g., hemorrhage, inflammatory cell infiltration, and tissue loss) were observed in the spinal cords of the lithium-treated group compared with the vehicle-treated group. Microglial activation (evaluated by measuring the immunoreactivity of ionized calcium-binding protein-1) was also significantly reduced in the lithium-treated group. These findings suggest that GSK-3β becomes activated after SCI, and that a non-specific enzyme inhibitor, lithium, ameliorates rat SCI by increasing phosphorylation of GSK-3β and the associated molecules Nrf-2 and HO-1.


Sujets)
Animaux , Rats , Technique de Western , Glycogen Synthase Kinases , Glycogen synthase , Glycogène , Heme oxygenase-1 , Hème , Hémorragie , Chlorure de lithium , Lithium , Phosphorylation , Traumatismes de la moelle épinière , Moelle spinale
10.
Anatomy & Cell Biology ; : 48-59, 2017.
Article Dans Anglais | WPRIM | ID: wpr-193188

Résumé

Glycogen synthase kinase (GSK)-3β has been known as a pro-inflammatory molecule in neuroinflammation. The involvement of GSK-3β remains unsolved in acute monophasic rat experimental autoimmune encephalomyelitis (EAE). The aim of this study was to evaluate a potential role of GSK-3β in central nervous system (CNS) autoimmunity through its inhibition by lithium. Lithium treatment significantly delayed the onset of EAE paralysis and ameliorated its severity. Lithium treatment reduced the serum level of pro-inflammatory tumor necrosis factor a but not that of interleukin 10. Western blot analysis showed that the phosphorylation of GSK-3β (p-GSK-3β) and its upstream factor Akt was significantly increased in the lithium-treated group. Immunohistochemical examination revealed that lithium treatment also suppressed the activation of ionized calcium binding protein-1-positive microglial cells and vascular cell adhesion molecule-1 expression in the spinal cords of lithium-treated EAE rats. These results demonstrate that lithium ameliorates clinical symptom of acute monophasic rat EAE, and GSK-3 is a target for the suppression of acute neuroinflammation as far as rat model of human CNS disease is involved.


Sujets)
Animaux , Humains , Rats , Auto-immunité , Technique de Western , Calcium , Système nerveux central , Maladies du système nerveux central , Encéphalomyélite auto-immune expérimentale , Glycogen Synthase Kinase 3 , Glycogen Synthase Kinases , Glycogen synthase , Glycogène , Interleukine-10 , Lithium , Modèles animaux , Sclérose en plaques , Paralysie , Phosphorylation , Moelle spinale , Facteur de nécrose tumorale alpha , Molécule-1 d'adhérence des cellules vasculaires
11.
Korean Journal of Veterinary Research ; : 117-120, 2016.
Article Dans Anglais | WPRIM | ID: wpr-20936

Résumé

Experimental autoimmune encephalomyelitis (EAE) in Lewis rats is characterized by transient paralysis followed by recovery. To evaluate whether transient paralysis in EAE affects bone density, tibiae of EAE rats were morphologically investigated using micro-computed tomography and histology. The parameters of bone health were significantly reduced at the peak stage of EAE rats relative to those of controls (p < 0.05). The reduction of bone density was found to remain unchanged, even in the recovery stage. Collectively, the present data suggest that osteoporosis occurs in paralytic rats with monophasic EAE, possibly through the disuse of hindlimbs and/or autoimmune inflammation.


Sujets)
Animaux , Rats , Auto-immunité , Densité osseuse , Encéphalomyélite auto-immune expérimentale , Membre pelvien , Inflammation , Ostéoporose , Paralysie , Tibia
12.
Journal of Veterinary Science ; : 281-284, 2008.
Article Dans Anglais | WPRIM | ID: wpr-97503

Résumé

The radioprotective activity of extracts from the red seaweed Callophyllis (C.) japonica was investigated in mice that underwent whole-body exposure to gamma radiation. A methanol extract of C. japonica and its fractions [hexane, ethyl acetate (EtOAc), butanol and the remaining H(2)O] were used. Each fraction (100 mg/kg body weight) was administered intraperitoneally (i.p.) 2 times into the BALB/c mice, once at 1 and once at 24 h before exposure to 9 Gray (Gy) of gamma radiation. Pre-irradiation administration of the hexane and EtOAc fractions saved the mice, with their survival rates being greater than 80% at 30 days post-irradiation; the mice that were pretreated with the other fractions showed survival rates lower than 20% over the same time period. To examine the effect of each C. japonica fraction on the survival of intestinal and bone marrow stem cells, the number of intestinal crypts and bone marrow cells in the gamma-irradiated mice were examined. Pre-treatment of mice (i.p., 100 mg/kg body weight at 1 and 24 h before irradiation) with the hexane or EtOAc fraction prior to 6-Gy irradiation significantly protected the number of jejunal crypts and bone marrow cells at 9 days after irradiation. These findings suggest that certain extracts from C. japonica, when they are administered prior to irradiation, play an important role in the survival of irradiated mice, and this is possibly due to the extracts protecting the hematopoietic cells and intestinal stem cells against gamma irradiation.


Sujets)
Animaux , Femelle , Souris , Acétates , Cellules de la moelle osseuse/effets des médicaments et des substances chimiques , Survie cellulaire/effets des médicaments et des substances chimiques , Rayons gamma , Hexanes , Muqueuse intestinale/cytologie , Jéjunum/cytologie , Souris de lignée BALB C , Extraits de plantes/pharmacologie , Lésions radiques expérimentales/prévention et contrôle , Radioprotecteurs/pharmacologie , Algue marine , Irradiation corporelle totale/médecine vétérinaire
13.
Journal of Veterinary Science ; : 323-327, 2007.
Article Dans Anglais | WPRIM | ID: wpr-117487

Résumé

Phosphorylation of caveolin-1 occurs during cell activation by various stimuli. In this study, the involvement of caveolin-1 in an irradiation injured spinal cord was examined by analyzing the phosphorylation of caveolin-1 in the spinal cord of rats after irradiation with a single dose of 15 Gray from a (60)Co gamma-ray source at 24 h post-irradiation (PI). A Western blot analysis showed that the phosphorylated form of caveolin-1 (p-caveolin-1) was expressed constitutively in the normal spinal cords and was significantly higher in the spinal cord of irradiated rats at 24 h PI. The increased expression of ED1, which is a marker of activated microglia/macrophages, was matched with that of p-caveolin-1. In the irradiated spinal cords, there was a higher level of p-caveolin-1 immunoreactivity in the isolectin B4-positive microglial, ependymal, and vascular endothelial cells, in which p-caveolin-1 was weakly and constitutively expressed in the normal control spinal cords. These results suggest that total body irradiation induces activation of microglial cells in the spinal cord through the phosphorylation of caveolin-1.


Sujets)
Animaux , Mâle , Rats , Technique de Western/médecine vétérinaire , Cavéoline-1/métabolisme , Régulation de l'expression des gènes/effets des radiations , Immunohistochimie/médecine vétérinaire , Phosphorylation/effets des radiations , Rat Sprague-Dawley , Moelle spinale/physiopathologie , Traumatismes de la moelle épinière/physiopathologie
SÉLECTION CITATIONS
Détails de la recherche