Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Biol. Res ; 57: 5-5, 2024. ilus, graf
Article Dans Anglais | LILACS | ID: biblio-1550060

Résumé

BACKGROUND: Basal energetic metabolism in sperm, particularly oxidative phosphorylation, is known to condition not only their oocyte fertilising ability, but also the subsequent embryo development. While the molecular pathways underlying these events still need to be elucidated, reactive oxygen species (ROS) could have a relevant role. We, therefore, aimed to describe the mechanisms through which mitochondrial activity can influence the first stages of embryo development. RESULTS: We first show that embryo development is tightly influenced by both intracellular ROS and mitochondrial activity. In addition, we depict that the inhibition of mitochondrial activity dramatically decreases intracellular ROS levels. Finally, we also demonstrate that the inhibition of mitochondrial respiration positively influences sperm DNA integrity, most likely because of the depletion of intracellular ROS formation. CONCLUSION: Collectively, the data presented in this work reveals that impairment of early embryo development may result from the accumulation of sperm DNA damage caused by mitochondrial-derived ROS.


Sujets)
Humains , Mâle , Sperme/métabolisme , Mitochondries , Spermatozoïdes/métabolisme , Espèces réactives de l'oxygène/métabolisme , Stress oxydatif , Développement embryonnaire
2.
Biol. Res ; 55: 15-15, 2022. ilus, tab
Article Dans Anglais | LILACS | ID: biblio-1383917

Résumé

BACKGROUND: The assessment of sperm DNA integrity has been proposed as a complementary test to conventional mammalian semen analysis. In this sense, single-strand (SSB) and double-strand (DSB) DNA breaks, the two types of sperm DNA fragmentation (SDF), have been reported to have different aetiologies and to be associated to different fertility outcomes in bovine and humans. Considering that no studies in porcine have addressed how SDF may affect sperm quality and fertility outcomes, the present work aimed to determine the impact of global DNA damage, SSB and DSB on sperm quality and in vitro fertilising ability. To this end, 24 ejaculates (one per boar) were split into three aliquots: the first was used to assess sperm quality parameters through a computer-assisted sperm analysis (CASA) system and flow cytometry; the second was used to perform in vitro fertilisation, and the third, to evaluate sperm DNA integrity using alkaline and neutral Comet assays. RESULTS: The results showed that global DNA damage negatively correlates (P 0.05). CONCLUSION: Considering all these findings, this work sets a useful model to study how SDF negatively influences fertility.


Sujets)
Animaux , Mâle , Bovins , Spermatozoïdes , Altération de l'ADN , Suidae , Développement embryonnaire , Fragmentation de l'ADN , Fécondation , Mammifères
SÉLECTION CITATIONS
Détails de la recherche