Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtre
1.
Chinese Journal of Biotechnology ; (12): 415-424, 2019.
Article Dans Chinois | WPRIM | ID: wpr-771365

Résumé

Acid protease, an important aspartic protease, has been widely used in food, pharmaceutical and tanning industries. To promote the research and application of acid protease, an acid protease gene (pepA) from Aspergillus oryzae was obtained from fermented soy based on metagenome sequencing, and then cloned and transformed into Pichia pastoris GS115 for heterologous expression. The characteristic of recombinant PepA was also investigated. The activity of acid protease in the culture supernatant of P. pastoris was 50.62 U/mL. The molecular mass of PepA was about 50 kDa, and almost no other proteins in the supernatant were observed, as shown by SDS-PAGE. The optimum pH and temperature of PepA were determined as pH 4.5 and 50 ℃. Mn²⁺ and Cu²⁺ enhanced the activity of PepA, whereas Fe³⁺, Fe²⁺ and Ca² had inhibitory effects on its activity. The above findings can provide guidance for heterologous expression and industrial application of acid protease from Aspergillus oryzae.


Sujets)
Aspergillus oryzae , Clonage moléculaire , Endopeptidases , Concentration en ions d'hydrogène , Pichia , Protéines recombinantes , Température
2.
Journal of Practical Radiology ; (12): 95-97, 2015.
Article Dans Chinois | WPRIM | ID: wpr-473545

Résumé

Objective To investigate the value of multi-slice CT in diagnosis of abdominal cocoon.Methods CT findings of six cases with pathologically proved abdominal cocoon were collected and analyzed retrospectively.The three-dimensional imagines were obtained including multi-planar reconstruction(MPR),maximum intensity projection(MIP)and volume rendering(VR)at workstation,the rela-tionships between the lesions and surrounding structure were observed.Results A group of local small intestine were seen gathered in all six cases,the coiled intestine arranged inaccordionshape orbananashape.The fibrous capsule were seen around them with different thickness,which were low density and slightly enhancement.Mesenteric arteries showed abnormal changes,showing ten-sion,aggregation.Conclusion MSCT can provide a wealth of diagnostic information and is the best method of examination abdomi-nal cocoon.

3.
Chinese Journal of Biotechnology ; (12): 90-97, 2014.
Article Dans Chinois | WPRIM | ID: wpr-242409

Résumé

Enzymatic conversion is very important to produce functional rare sugars, but the conversion rate of single enzymes is generally low. To increase the conversion rate, a dual-enzyme coupled reaction system was developed. Dual-enzyme coupled reaction system was constructed using D-psicose-3-epimerase (DPE) and L-rhamnose isomerase (L-RhI), and used to convert D-fructose to D-psicose and D-allose. The ratio of DPE and L-RhI was 1:10 (W/W), and the concentration of DPE was 0.05 mg/mL. The optimum temperature was 60 degrees C and pH was 9.0. When the concentration of D-fructose was 2%, the reaction reached its equilibrium after 10 h, and the yield of D-psicose and D-allose was 5.12 and 2.04 g/L, respectively. Using the dual-enzymes coupled system developed in the current study, we could obtain sugar syrup containing functional rare sugar from fructose-rich raw material, such as high fructose corn syrup.


Sujets)
Aldose-ketose isomerases , Métabolisme , Carbohydrate epimerases , Métabolisme , Fructose , Chimie , Glucose , Chimie , Concentration en ions d'hydrogène , Température
4.
Protein & Cell ; (12): 123-131, 2012.
Article Dans Anglais | WPRIM | ID: wpr-757289

Résumé

D-psicose 3-epimerase (DPEase) is demonstrated to be useful in the bioproduction of D-psicose, a rare hexose sugar, from D-fructose, found plenty in nature. Clostridium cellulolyticum H10 has recently been identified as a DPEase that can epimerize D-fructose to yield D-psicose with a much higher conversion rate when compared with the conventionally used DTEase. In this study, the crystal structure of the C. cellulolyticum DPEase was determined. The enzyme assembles into a tetramer and each subunit shows a (β/α)(8) TIM barrel fold with a Mn(2+) metal ion in the active site. Additional crystal structures of the enzyme in complex with substrates/products (D-psicose, D-fructose, D-tagatose and D-sorbose) were also determined. From the complex structures of C. cellulolyticum DPEase with D-psicose and D-fructose, the enzyme has much more interactions with D-psicose than D-fructose by forming more hydrogen bonds between the substrate and the active site residues. Accordingly, based on these ketohexose-bound complex structures, a C3-O3 proton-exchange mechanism for the conversion between D-psicose and D-fructose is proposed here. These results provide a clear idea for the deprotonation/protonation roles of E150 and E244 in catalysis.


Sujets)
Sites de fixation , Biocatalyse , Domaine catalytique , Clostridium cellulolyticum , Hexose , Chimie , Manganèse , Chimie , Structure quaternaire des protéines , Racémases et épimérases , Chimie , Métabolisme , Spécificité du substrat
5.
Chinese Journal of Biotechnology ; (12): 457-465, 2012.
Article Dans Chinois | WPRIM | ID: wpr-342471

Résumé

Rare sugar is a kind of important low-energy monosaccharide that is rarely found in nature and difficult to synthesize chemically. D-allose, a six-carbon aldose, is an important rare sugar with unique physiological functions. It is radical scavenging active and can inhibit cancer cell proliferation. To obtain D-allose, the microorganisms deriving D-psicose 3-epimerase (DPE) and L-rhamnose isomerase (L-RhI) have drawn intense attention. In this paper, DPE from Clostridium cellulolyticum H10 was cloned and expressed in Bacillus subtilis, and L-RhI from Bacillus subtilis 168 was cloned and expressed in Escherichia coli BL21 (DE3). The obtained crude DPE and L-RhI were then purified through a HisTrap HP affinity chromatography column and an anion-exchange chromatography column. The purified DPE and L-RhI were employed for the production of rare sugars at last, in which DPE catalyzed D-fructose into D-psicose while L-RhI converted D-psicose into D-allose. The conversion of D-fructose into D-psicose by DPE was 27.34%, and the conversion of D-psicose into D-allose was 34.64%.


Sujets)
Aldose-ketose isomerases , Métabolisme , Bacillus subtilis , Carbohydrate epimerases , Métabolisme , Clostridium cellulolyticum , Escherichia coli , Métabolisme , Fructose , Métabolisme , Glucose , Métabolisme
6.
Chinese Journal of Biotechnology ; (12): 592-601, 2012.
Article Dans Chinois | WPRIM | ID: wpr-342458

Résumé

L-Arabinose isomerase (L-AI) is an intracellular enzyme that catalyzes the reversible isomerization of D-galactose and D-tagatose. Given the widespread use of D-tagatose in the food industry, food-grade microorganisms and the derivation of L-AI for the production of D-tagatose is gaining increased attention. In the current study, food-grade strains from different foods that can convert D-galactose to D-tagatose were screened. According to physiological, biochemical, and 16S rDNA gene analyses, the selected strain was found to share 99% identity with Pediococcus pentosaceus, and was named as Pediococcus pentosaceus PC-5. The araA gene encoding L-AI from Pediococcus pentosaceus PC-5 was cloned and overexpressed in E. coli BL21. The yield of D-tagatose using D-galactose as the substrate catalyzed by the crude enzyme in the presence of Mn2+ was found to be 33% at 40 degrees C.


Sujets)
Aldose-ketose isomerases , Génétique , Biotransformation , Clonage moléculaire , Escherichia coli , Génétique , Métabolisme , Galactose , Métabolisme , Vecteurs génétiques , Génétique , Hexose , Métabolisme , Pediococcus , Classification , Génétique , Protéines recombinantes , Génétique
7.
Chinese Journal of Biotechnology ; (12): 399-405, 2009.
Article Dans Chinois | WPRIM | ID: wpr-286698

Résumé

By constructing the genomic DNA library of Meiothermus ruber CBS-01, the genes of trehalose phosphate synthase (TPS) and trehalose phosphate phosphatase (TPP) involved in trehalose synthesis were cloned. The genes were cloned into the plasmid pET21a, and expressed in Escherichia coli Rosetta gami (DE3). The activities of these two purified enzymes were confirmed by thin layer chromatography (TLC). Meanwhile, we tested the cellular compatible solutes of M. ruber CBS-01 under different environmental pressure, and found that under hyperosmotic pressure, this strain can accumulate trhalose-6-phosphate, but not trehalose. These results can give more insight to future research in the roles of TPS/TPP and TreS pathway.


Sujets)
Protéines bactériennes , Génétique , Métabolisme , Clonage moléculaire , Escherichia coli , Génétique , Métabolisme , Glucosyltransferases , Génétique , Métabolisme , Phosphoric monoester hydrolases , Génétique , Métabolisme , Protéines de fusion recombinantes , Génétique , Métabolisme , Thermus , Génétique , Tréhalose
SÉLECTION CITATIONS
Détails de la recherche