Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Journal of Korean Orthopaedic Research Society ; : 80-87, 2010.
Article Dans Coréen | WPRIM | ID: wpr-149511

Résumé

PURPOSE: To analyze the action mechanism of NF-kappaB, IkappaB-alpha and effect of the Dexamethasone (DEXA) in mediating this inflammation, after stimulating cultured herniated intervertebral disc cells with TNF-alpha. MATERIALS AND METHODS: After cultured human intervertebral disc cells passaged three times, they were divided into four groups: A control group (A), DEXA treatment group (B), TNF-alpha treated group (C), TNF-alpha and DEXA were treated at the same time (D). IL-6 and IL-1beta gene expression were measured with semi-quantitative RT-PCR. Western blot analysis was performed to measure protein expression of IkappaB-alpha in the above groups for 10 minutes, 1 hour, 2 hours. In addition, in order to explain the mechanism of NF-kappaB nuclear binding for each group, the nuclear amount of NF-kappaB binding in the nucleus is measured by EMSA. RESULTS: In RT-PCR, expression of IL-6 and IL-1beta was greatest in group C, followed by group D, group A. IkappaB-alpha expression of the group treated with DEXA was not detected in Western blot results within 10 minutes. However, if stimulated by TNF-alpha, the DEXA was not inhibited of IkappaB-alpha concentration. After 1 hour and 2 hours, IkappaB-alpha levels were expressed by cells autonomously (autoregulatory induction). EMSA results expression levels in nuclear protein was maintained in accordance with protein expression. CONCLUSIONS: Our study shows that DEXA inhibits the production of mediators such as inflammatory IL-6 and IL-1beta, however, may not inhibit the transcription of NF-kappaB stimulated by TNF-alpha.


Sujets)
Humains , Technique de Western , Dexaméthasone , Expression des gènes , Protéines I-kappa B , Inflammation , Interleukine-6 , Disque intervertébral , Négociation , Facteur de transcription NF-kappa B , Protéines nucléaires , Facteur de nécrose tumorale alpha
2.
Journal of Lung Cancer ; : 102-110, 2006.
Article Dans Anglais | WPRIM | ID: wpr-167586

Résumé

PURPOSE: Overexpression of COX-2, an enzyme responsible fro the synthesis of prostaglandins, is well linked to human chronic lung diseases. The mechanism by which COX-2 expression is increased or enhanced in cancer cells remains largely unknown. Any compound which can reduce COX-2 expression may be considered as an anti-cancer agent. MATERIALS AND METHODS: Leptomycin B (LMB) is a metabolite of Streptomyces and a specific inhibitor of CRM1 nuclear export receptor. A549 is a human lung cancer cell line. To evaluate the effect of LMB on COX-2 expression induced by IL-1beta, a pro-inflammatory cytokine, in A549 cells, Western blot and RT-PCR assays were applied to measure COX-2 protein and mRNA expressions in response to IL-1beta, respectively. Luciferase experiments were done to measure promoter activity of COX-2, NF-kappaB or AP-1. CRM1 siRNA trasfection experiment was performed to knock-down endogenous CRM1. Biochemical protein fractionation method was also carried out to see intracellular localization of proteins. RESULTS: LMB at 9 nM strongly suppressed IL-1beta-induced expression of COX-2 protein that was attributable to decreased COX-2 transcript and promoter activity, but not mRNA stability. Distinctly, knock-down of CRM1 had no effect on COX-2 expression by IL-1beta. Moreover, LMB did not affect IL-1beta-induced phosphorylation of ERK-1/2, JNK- 1/2, and p38 MAPK or AP-1 promoter activity. In contrast, LMB blocked IL-1beta- mediated cytosolic IkappaB-alpha degradation, p65 NF-kappaB nuclear translocation, and NF-kappaB promoter activity. CONCLUSION: LMB potently down-regulates IL-1beta- induced COX-2 at transcriptional level in A549 cells, in part, through modulation of the IkappaB-alpha/NF-kappaB pathway but independent of CRM1, MAPKs and AP-1.


Sujets)
Humains , Transport nucléaire actif , Technique de Western , Lignée cellulaire , Cytosol , Régulation négative , Luciferases , Maladies pulmonaires , Tumeurs du poumon , Poumon , Facteur de transcription NF-kappa B , p38 Mitogen-Activated Protein Kinases , Phosphorylation , Prostaglandines , Stabilité de l'ARN , ARN messager , Petit ARN interférent , Streptomyces , Facteur de transcription AP-1
SÉLECTION CITATIONS
Détails de la recherche