Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 380
Filtre
1.
Journal of Sun Yat-sen University(Medical Sciences) ; (6): 45-53, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1007273

Résumé

ObjectiveTo explore the function of DANCR during the differentiation of human embryonic stem cells (hESC) toward definitive endoderm (DE). MethodsThe in vitro DE differentiation system was established and its efficiency was verified. The correlation between the expression level of DANCR and DE differentiation process was detected. Using lentivirus system, we stably knocked down DANCR in hESC. The shDANCR hESC line was applied to DE differentiation, using qPCR and Western blot to detect the expression of DE marker genes SOX17 and FOXA2, and that of primitive streak marker genes Brachyury (T), EOMES, MIXL1 and GSC. Dual luciferase reporter assay and qPCR were used to confirm the interaction between DANCR and the WNT pathway during DE differentiation. ResultsThe in vitro differentiation system mimicked DE differentiation efficiently. And the expression of DANCR was gradually downregulated during differentiation. DANCR was efficiently knocked down in the shDANCR hESC line (P < 0.001). Compared with those in the control group, the expression levels of primitive markers Brachyury (T), EOMES, MIXL1 and GSC, as well as DE markers SOX17 and FOXA2, were significantly decreased in shDANCR groups (P < 0.05). Furthermore, the transcriptional activity of the WNT pathway in shDANCR groups was lower than that in the control group (P < 0.05). And RNA levels of downstream genes of the WNT pathway, FZD5, FZD8, SFRP1, FRZB and ANKRD6, were significantly decreased in shDANCR groups (P < 0.05). However, differences in protein levels of the TGFβ pathway effectors SMAD2/3 and p-SMAD2 were statistically insignificant in shDANCR and control groups (P > 0.05). Forced activation of β-CATENIN rescued DANCR knock down-induced deficiency in DE differentiation. ConclusionsThe expression of DANCR decreases during DE differentiation. DANCR may promote DE differentiation through modulating the activity of the WNT pathway.

2.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 107-113, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1005259

Résumé

ObjectiveTo investigate the mechanism of Biejiajian Wan in the intervention of primary liver cancer based on long non-coding RNA SNHG5 (lncRNA SNHG5)/micro RNA-26a-5p (miRNA-26a-5p)/glycogen synthase kinase-3β (GSK-3β) signal axis. MethodDouble luciferase reporting assay was used to verify the targeted interaction between lncRNA SNHG5 and miRNA-26a-5p, miRNA-26a-5p, and GSK-3β in HepG2 cells. Nude-mouse transplanted tumor model of human HepG2 were established and randomly divided into model group, Biejiajian Wan low-dose group (0.5 g·kg-1), medium-dose group (1.0 g·kg-1), and high-dose group (2.0 g·kg-1), and sorafenib group (100 mg·kg-1), with 10 mice in each group. The mice were given intragastric administration of normal saline or drug for 28 days, and the tumor volume was measured at different time. Hematoxylin-eosin (HE) staining was used to observe the histological changes of tumors. The nucleic acid levels of lncRNA SNHG5, miRNA-26a-5p, GSK-3β, and β-catenin mPNA in tumor tissue were detected by real-time quantitative polymerase chain reaction (Real-time PCR). The protein expression levels of GSK-3β and β-catenin in tumor tissue were detected by western blot. ResultCompared with the SNHG5-WT (wild type) + miRNA NC (negative control) group, the relative luciferase activities of the SNHG5-WT + miRNA-26a-5p mimic group were decreased (P<0.05). Compared with the GSK-3β-WT + miRNA NC group, the relative luciferase activity of the GSK-3β-WT + miRNA-26a-5p mimic group was decreased (P<0.05). Compared with the model group, the tumor volume of Biejiajian Wan low-dose, medium-dose, and high-dose groups was significantly decreased (P<0.05, P<0.01). Compared with the model group, the cells in the tumor tissue of nude mice in each dose group of Biejiajian Wan were sparsely arranged with necrocytosis, which showed concentration-dependent changes. Compared with the model group, the expression levels of lncRNA SNHG5, GSK-3β, and β-catenin were decreased (P<0.05, P<0.01), while the expression of miRNA-26a-5p was increased in each dose group of Biejiajian Wan (P<0.05, P<0.01). Compared with the model group, the protein expression levels of GSK-3β and β-catenin were decreased in each dose group of Biejiajian Wan (P<0.05, P<0.01). ConclusionBiejiajian Wan may affect the necrosis of liver cancer cells through lncRNA SNHG5/miRNA-26a-5p/GSK-3β signal axis and thus play an anti-tumor role. This research will provide more theoretical basis for the clinical application of Biejiajian Wan.

3.
Organ Transplantation ; (6): 70-81, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1005236

Résumé

Objective To analyze the core genes of lung ischemia-reperfusion injury and construct a competitive endogenous RNA (ceRNA) network. Methods Original data of GSE145989 were downloaded from the Gene Expression Omnibus (GEO) database as the training set, and the GSE172222 and GSE9634 datasets were used as the validation sets, and the differentially-expressed genes (DEG) were identified. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Protein-protein interaction (PPI) network was constructed, and the core genes were screened, and the diagnostic values of these core genes and the immune infiltration levels of immune cells were evaluated. The ceRNA network was constructed and validated. The targeted drugs based on ceRNA network were assessed. Results A total of 179 DEG were identified, including 61 down-regulated and 118 up-regulated genes. GO analysis showed that DEGs were associated with multiple biological processes, such as cell migration, differentiation and regulation, etc. They were correlated with cell components, such as vesicle membrane, serosa and membrane raft, etc. They were also associated with multiple molecular functions, such as chemokine receptor, G protein-coupled receptor, immune receptor activity and antigen binding, etc. KEGG pathway enrichment analysis revealed that DEG were involved in tumor necrosis factor (TNF), Wnt, interleukin (IL)-17 and nuclear factor (NF)-κB signaling pathways, etc. PPI network suggested that CD8A, IL2RG, STAT1, CD3G and SYK were the core genes of lung ischemia-reperfusion injury. The ceRNA network prompted that miR-146a-3p, miR-28-5p and miR-593-3p were related to the expression level of CD3G. The miR-149-3p, miR-342-5p, miR-873-5p and miR-491-5p were correlated with the expression level of IL-2RG. The miR-194-3p, miR-512-3p, miR-377-3p and miR-590-3p were associated with the expression level of SYK. The miR-590-3p and miR-875-3p were related to the expression level of CD8A. The miR-143-5p, miR-1231, miR-590-3p and miR-875-3p were associated with the expression level of STAT1. There were 13 targeted drugs for CD3G, 4 targeted drugs for IL-2RG, 28 targeted drugs for SYK and 3 targeted drugs for lncRNA MUC2. No targeted drugs were identified for CD8A, STAT1 and other ceRNA network genes. Conclusions CD8A, IL2RG, STAT1, CD3G and SYK are the core genes of lung ischemia-reperfusion injury. The research and analysis of these core genes probably contribute to the diagnosis of lung ischemia-reperfusion injury and providing novel research ideas and therapeutic targets.

4.
Acta Anatomica Sinica ; (6): 32-42, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1015150

Résumé

Objective To investigate the relieving effects of knockdown of long non-coding RNA(lncRNA)taurine up-regulated gene 1 (TUG1) on inhibiting nucleotide binding oligomerization domain like receptor protein 1 (NLRP1) inflammasome and the progression of Alzheimer’ s disease. Methods Wild-type (WT group, 10 mice) or amyloid precursor protein (APP) / presenilin-1 (PS1) transgenic mice (30 mice) with a genetic background of C57 / BL6 aged 9-10 weeks were used in this study. APP / PS1 transgenic mice were randomly divided into model group, model+lncRNA TUG1 short hairpin RNA (shRNA) group and model + shRNA non target (NT) group (n = 10) . Blood samples, cerebral cortex tissues, primary microglial cells and primary astrocytes were collected from mice 12 weeks of age on day 1 (3-month-old) and 32 weeks of age on day 1 (8-month-old), with 5 mice per group at each time point. Real-time PCR analysis was used to detect the expression levels of lncRNA TUG1 and macrophage migration inhibitory factor (MIF) mRNA in cerebral cortex tissues and primary microglial cells, and C1r and C1s mRNA levels in primary astrocytes of 3-month-old and 8-month-old mice in the above 4 groups, respectively. ELISA was used to determine the MIF in plasma samples of the above 4 groups of mice. Primary microglia and astrocytes from the cerebral cortex of 3-month-old and 8-month-old mice were co-cultured. CCK-8 method was used to determine the proliferation ability of the above cells. Western blotting was used to determine the expression levels of MIF, pro interleukin-1β (pro-IL-1β), apoptosis associated speck-like protein containing a caspase recrult domain(ASC), Caspase-1 (p20), Caspase-1 (full), NLRP1 and NLRP3 in cerebral cortex tissues of 3-month-old and 8-month-old mice. Immunofluorescent staining was used to determine amyloid beta(Aβ) in cerebral cortex of 8-month-old mice. Results At the age of 3-month-old and 8-month-old, compared with the WT group, the relative expression level of lncRNA TUG1 and MIF in cerebral cortex tissues and primary microglia of model group mice was significantly up-regulated, with primary microglial cells and astrocytes proliferation ability enhanced (P0. 05) . There was no significant difference between the model group and the model+shRNA NT group mice of all the above factors (P>0. 05) . Conclusion In APP / PS1 transgenic mice, up-regulation of lncRNA TUG1 and MIF are positively associated with the activation of NLRP1 inflammasome in mice cerebral cortex tissues and primary microglia. Knock-down of lncRNA TUG1 can ameliorate the progression of Alzheimer’ s disease.

5.
Chinese Pharmacological Bulletin ; (12): 582-591, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1013657

Résumé

Aim To screen and study the expression of long non-coding RNA (IncRNA) in rats with middle cerebral artery occlusion (MCAO) with MCAO treated with Tao Hong Si Wu decoction (THSWD) and determine the possible molecular mechanism of THSWD in treating MCAO rats. Methods Three cerebral hemisphere tissue were obtained from the control group, MCAO group and MCAO + THSWD group. RNA sequencing technology was used to identify IncRNA gene expression in the three groups. THSWD-regulated IncRNA genes were identified, and then a THSWD-regu-lated IncRNA-mRNA network was constructed. MCODE plug-in units were used to identify the modules of IncRNA-mRNA networks. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) were used to analyze the enriched biological functions and signaling pathways. Cis- and trans-regulatory genes for THSWD-regulated IncRNAs were identified. Reverse transcription real-time quantitative pol-ymerase chain reaction (RT-qPCR) was used to verify IncRNAs. Molecular docking was used to identify IncRNA-mRNA network targets and pathway-associated proteins. Results In MCAO rats, THSWD regulated a total of 302 IncRNAs. Bioinformatics analysis suggested that some core IncRNAs might play an important role in the treatment of MCAO rats with THSWD, and we further found that THSWD might also treat MCAO rats through multiple pathways such as IncRNA-mRNA network and network-enriched complement and coagulation cascades. The results of molecular docking showed that the active compounds gallic acid and a-mygdalin of THSWD had a certain binding ability to protein targets. Conclusions THSWD can protect the brain injury of MCAO rats through IncRNA, which may provide new insights for the treatment of ischemic stroke with THSWD.

6.
Chinese Pharmacological Bulletin ; (12): 55-62, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1013592

Résumé

Aim To investigate the effect of long non- coding RNA p21 (LncRNA p21) regulating Hippo- Yes-associated protein (Hippo-YAP) signaling pathway on the formation of abdominal aortic aneurysm (AAA) in mice. Methods C57BL/6 ApoE

7.
International Eye Science ; (12): 345-350, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1011380

Résumé

AIM: To investigate the effect of long non-coding RNA-HIF1A-AS1(lncRNA HIF1A-AS1)on the chemotherapy sensitivity of vincristine(VCR)-resistant in retinoblastoma(RB)cells by regulating the expression of hypoxia-inducible factor-1α(HIF-1α).METHODS: The human RB VCR-resistant cell line SO-RB50/VCR was established, expression of lncRNA HIF1A-AS1 in SO-RB50 and SO-RB50/VCR cells were detected by reverse transcription-quantitative real-time PCR(RT-qPCR); inhibition of lncRNA HIF1A-AS1 expression or simultaneous overexpression of HIF-1α in SO-RB50/VCR cells, and then median inhibitory concentration(IC50)of VCR and cell proliferation and apoptosis were detected in SO-RB50/VCR cells; the protein expressions of HIF-1α, multidrug resistance associate protein(MRP)and P-glycoprotein(P-gp)were measured by Western blot.RESULTS: Compared with SO-RB50 cells, the expression levels of lncRNA HIF1A-AS1 and HIF-1α protein in SO-RB50/VCR cells were increased(P&#x003C;0.05); after inhibiting the expression of lncRNA HIF1A-AS1 in SO-RB50/VCR cells, the apoptosis rate was significantly increased(P&#x003C;0.05), optical density(OD450), the IC50 value of VCR on cells and the expression levels of HIF-1α, MRP and P-gp proteins were significantly reduced(P&#x003C;0.05); overexpression of HIF-1α attenuates the inhibitory effect of down-regulated lncRNA HIF1A-AS1 expression on drug resistance in SO-RB50/VCR cells.CONCLUSION: The lncRNA HIF1A-AS1 was highly expressed in SO-RB50/VCR cells, and inhibition of lncRNA HIF1A-AS1 expression reduced VCR resistance in SO-RB50/VCR cells by down-regulating HIF-1α expression.

8.
Chinese Journal of Lung Cancer ; (12): 919-933, 2024.
Article Dans Chinois | WPRIM | ID: wpr-1010100

Résumé

BACKGROUND@#Lung cancer is a major threat to human health. The molecular mechanisms related to the occurrence and development of lung cancer are complex and poorly known. Exploring molecular markers related to the development of lung cancer is helpful to improve the effect of early diagnosis and treatment. Long non-coding RNA (lncRNA) THAP7-AS1 is known to be highly expressed in gastric cancer, but has been less studied in other cancers. The aim of the study is to explore the role and mechanism of methyltransferase-like 3 (METTL3) mediated up-regulation of N6-methyladenosine (m6A) modified lncRNA THAP7-AS1 expression in promoting the development of lung cancer.@*METHODS@#Samples of 120 lung cancer and corresponding paracancerous tissues were collected. LncRNA microarrays were used to analyze differentially expressed lncRNAs. THAP7-AS1 levels were detected in lung cancer, adjacent normal tissues and lung cancer cell lines by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The diagnostic value of THAP7-AS1 in lung cancer and the relationship between THAP7-AS1 expression and survival rate and clinicopathological parameters were analyzed. Bioinformatics analysis, methylated RNA immunoprecipitation (meRIP), RNA pull-down and RNA-immunoprecipitation (RIP) assay were used to investigate the molecular regulation mechanism of THAP7-AS1. Cell proliferation, migration, invasion and tumorigenesis of SPC-A-1 and NCI-H1299 cells were determined by MTS, colony-formation, scratch, Transwell and xenotransplantation in vivo, respectively. Expression levels of phosphoinositide 3-kinase/protein kenase B (PI3K/AKT) signal pathway related protein were detected by Western blot.@*RESULTS@#Expression levels of THAP7-AS1 were higher in lung cancer tissues and cell lines (P<0.05). THAP7-AS1 has certain diagnostic value in lung cancer [area under the curve (AUC)=0.737], and its expression associated with overall survival rate, tumor size, tumor-node-metastasis (TNM) stage and lymph node metastasis (P<0.05). METTL3-mediated m6A modification enhanced THAP7-AS1 expression. The cell proliferation, migration, invasion and the volume and mass of transplanted tumor were all higher in the THAP7-AS1 group compared with the NC group and sh-NC group of SPC-A-1 and NCI-H1299 cells, while the cell proliferation, migration and invasion were lower in the sh-THAP7-AS1 group (P<0.05). THAP7-AS1 binds specifically to Cullin 4B (CUL4B). The cell proliferation, migration, invasion, and expression levels of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), phosphoinositide-3 kinase, catalytic subunit delta (PIK3CD), phospho-phosphatidylinositol 3-kinase (p-PI3K), phospho-protein kinase B (p-AKT) and phospho-mammalian target of rapamycin (p-mTOR) were higher in the THAP7-AS1 group compared with the Vector group of SPC-A-1 and NCI-H1299 cells (P<0.05).@*CONCLUSIONS@#LncRNA THAP7-AS1 is stably expressed through m6A modification mediated by METTL3, and combines with CUL4B to activate PI3K/AKT signal pathway, which promotes the occurrence and development of lung cancer.


Sujets)
Humains , Tumeurs du poumon/anatomopathologie , ARN long non codant/métabolisme , Phosphatidylinositol 3-kinases/métabolisme , Régulation positive , Protéines proto-oncogènes c-akt/métabolisme , Lignée cellulaire tumorale , Prolifération cellulaire/génétique , Régulation de l'expression des gènes tumoraux , Methyltransferases/métabolisme , Cullines/génétique
9.
Biomedical and Environmental Sciences ; (12): 743-755, 2023.
Article Dans Anglais | WPRIM | ID: wpr-1007847

Résumé

This review aims to sum up how Non-coding RNAs (ncRNAs) regulate the development of periodontitis and provides a new perspective for understanding the pathogenesis of periodontitis. We explored the ncRNA's dual role in the development of periodontitis by summarizing evidence from previous in vivo and in vitro studies as well as clinical samples. In our review, the downregulation of 18 miRNAs, 22 lncRNAs and 10 circRNAs demonstrates protective roles in periodontitis. In contrast, the expression of other 11 miRNAs, 7 lncRNAs and 6 circRNAs are upregulated in periodontitis, which promote the progression of periodontitis. These dysregulated ncRNAs exert their protective or destructive roles by mainly influencing cell proliferation, differentiation and apoptosis via cross-talking with various molecules or signaling pathways. Our findings suggested which and how ncRNAs promote or delay the progression of periodontitis, which may greatly contribute to diagnose and therapy development of periodontitis based on ncRNAs in the future.


Sujets)
Humains , ARN long non codant/génétique , ARN circulaire , microARN , Parodontite/génétique , Apoptose
10.
Journal of Modern Urology ; (12): 1079-1085, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1005945

Résumé

【Objective】 To investigate the impact of long non-coding RNA (lncRNA) FGD5-AS1 on the malignant biolo-goical behavior of bladder cancer (BC) cells by regulating micro RNA (miR)-129-5p/cyclin dependent kinase 6 (CDK6) axis. 【Methods】 Human BC cell line T24 was cultured from tumor tissue and paracancerous tissue of 105 patients with confirmed BC. The expressions of FGD5-AS1, miR-129-5p and CDK6 mRNA in tissue samples and T24 cells were detected with RT-qPCR. T24 cells were randomly divided into control group, si-NC group, si-FGD5-AS1 group, si-FGD5-AS1+inhibitor NC group and si-FGD5-AS1+miR-129-5p inhibitor group. The cell viability, migration, invasion andapoptosis were detected with CCK-8, Wound healing test, Transwell assay and flow cytometry, respectively. The expressions of Bax, Bcl-2, Caspase3 and CDK6 were detected with Western blot. The relationship between FGD5-AS1 and miR-129-5p, between miR-129-5p and CDK6 were verified with double luciferase reporter gene experiment. 【Results】 FGD5-AS1 and CDK6 mRNA were highly expressed in BC tissue, while miR-129-5p was lowly expressed (P<0.05). After FGD5-AS1 silencing, the expression of FGD5-AS1,A450 value, cell scratch healing rate, cell invasion number, and expressions of Bcl-2 and CDK6 were significantly lower, while the apoptosis rate and expressions of miR-129-5p, Bax and Caspase3 were significantly higher (P<0.05). Inhibition of miR-129-5p expression reversed the effects of FGD5-AS1 silencing on various indexes of BC cells (P<0.05). FGD5-AS1 negatively regulated the expression of miR-129-5p, and miR-129-5p negatively regulated the expression of CDK6. 【Conclusion】 Silencing FGD5-AS1 may inhibit the expression of CDK6 protein by up-regulating miR-129-5p, thus inhibiting the proliferation, migration and invasion of BC cells and promoting cell apoptosis.

11.
Acta Anatomica Sinica ; (6): 56-62, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1015243

Résumé

Objective To study whether bergapten (BG) protects PC12 cells from oxygen-glucose deprivation (OGD) induced cell injury by regulating long non-coding RNA (lncRNA) opioid receptor gene (Oprm1) expression. Methods PC12 cells were divided into control (Con) group, OGD group, OGD+ low concentration BG (BG-L) group, OGD+medium concentration BG (BG-M) group, OGD + high concentration BG (BG-H) group, OGD + pcDNA group, OGD+pcDNA-Oprm1 group, OGD+BG+si-NC group, OGD+BG+si-Oprm1 group. The malondialdehyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were measured by the kits. Cell apoptosis rate was analysed by flow cytometry. The expression level of Oprm1 was analysed by Real-time PCR. Results Compared with the Con group, the apoptosis rate and MDA content of PC12 cells in OGD group increased significantly, whereas Oprm1 expression, SOD and GSH-Px activity decreased significantly (P < 0. 05). Compared with the OGD group, the apoptosis rate and MDA content of PC12 cells in the OGD + BG-L group, OGD + BG-M group, OGD + BG-H group were significantly reduced, whereas the Oprm1 expression, SOD and GSH-Px activities increased significantly (P < 0. 05). Compared with the OGD+pcDNA group, the apoptosis rate and MDA content of the PC12 cells in the OGD+pcDNA-Oprm1 group reduced significantly, whereas the SOD and GSH-Px activities increased significantly (P<0. 05). Compared with the OGD+BG+si-NC group, the apoptosis rate and MDA content of PC12 cells in the OGD+BG+si-Oprm1 group increased significantly, whereas the SOD and GSH-Px activities decreased significantly (P < 0. 05). Conclusion Bergapten may alleviate OGD-induced PC12 cell injury, which is correlated to the up-regulation of lncRNA Oprm1 expression.

12.
Acta Anatomica Sinica ; (6): 319-327, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1015210

Résumé

Objective To investigate the effect of long non-coding RNA (lncRNA) alpha-2-macroglobulin antisense RNA 1 (A2M-AS1) targeting microRNA (miR) -106b-5p on oxidized low-density lipoprotein (ox-LDL) -induced injury of human brain microvascular endothelial cells. Methods Human brain microvascular endothelial cells (ox-LDL group) were induced by ox-LDL, normal cultured cells were control group (Ctrl); A2M-AS1 overexpression (pcDNAA2M-AS1 group), empty vector (pcDNA group), miR-106b-5p inhibitor (anti-miR-106b-5p group), negative control (anti-miR-NC group), pcDNA-A2M-AS1 with control mimic NC (miR-NC group), pcDNA-A2M-AS1 with miR-106b-5p mimic (miR-106b-5p mimics group) were transfected into cells and treated with ox-LDL, n = 9. Real-time PCR was used to detect the expression levels of A2M-AS1 and miR-106b-5p; Kits were used to detect malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT)); Flow cytometry and TUNEL detected apoptosis; Dual luciferase reporter gene assay detected A2M-AS1 and miR-106b-5p targeting; Western blotting detected Bcl-2 and Bax protein expression. Results Compared with the Ctrl group, the expression level of A2M-AS1 in the ox-LDL group decreased, and the activity of SOD and CAT and the protein level of Bcl-2 decreased (P<0.05), while the expression level of miR-106b-5p and the level of MDA increased (P<0.05), and the rate of apoptosis and the protein level of Bax increased (P<0.05). Overexpressing A2M-AS1 or interfering with miR-106b-5p decreased the MDA level, apoptosis rate and Bax protein level after ox-LDL-induced cells, and increased SOD, CAT activity and Bcl-2 protein level (P<0.05). A2M-AS1 targeted miR-106b-5p; upregulation of miR-106b-5p reversed the effect of overexpressed lncRNA A2M-AS1 on ox-LDL-induced injury of human brain microvascular endothelial cells (P < 0.05). Conclusion A2M-AS1 attenuates ox-LDL-induced injury of human brain microvascular endothelial cells by targeting miR-106b-5p.

13.
Acta Anatomica Sinica ; (6): 405-413, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1015202

Résumé

[Abstract] Objective To explore the potential pathophysiological mechanism of depression by screening the expression profiles and competing endogenous RNA (ceRNA) regulatory network microRNA(miRNA), long non-coding RNA(lncRNA) and circular RNA (circRNA) in the hippocampus of chronic stress depression rat model. Methods Twelve SD rats were divided into blank group and model group. Chronic mild unpredictability stress (CUMS) was used to construct the rat model of depression. The whole transcriptome analysis was performed on the hippocampus of the rats, and the possible regulatory networks among lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA were explored by bioinformatics method. Results According to the | fold change | ≥1. 5 and P≤0. 05, 29 differentially expressed miRNAs (21 up-regulated and 8 down-regulated), 686 differentially expressed lncRNAs (163 up-regulated and 523 down-regulated) and 8 differentially expressed circRNAs (3 up-regulated and 5 down-regulated) were identified. Gene Ontology (GO) and Kytot Encyclopedia of Genes and Genomes(KEGG) pathway analysis showed that the target genes of miRNAs were mainly enriched in the Golgi apparatus and calcium ion binding process in the cell membrane, the functions of lncRNAs target genes involved nucleic acid binding regulation, cytokine and protein ubiquitination, etc, and the functions of host genes of circRNAs were associated with cellular stimulation response, metabolic process, catalytic activity and other processes. The ceRNA network of lncRNAs and circRNAs showed complex interactions between non-coding RNA (ncRNA) and mRNA related to synaptic plasticity, such as protein Wnt-sa(WNT5a) and collagentype III alpha1(COL8a1) related to axon orientation and laminin A2(LAMA2) related to neurodevelopment. Conclusion The ceRNA network of lncRNA and circRNA shows that the complex interaction betweens ncRNA and mRNA is highly associated with the neuroplasticity, which support the neuroplasticity hypothesis of depression.

14.
Journal of Zhejiang University. Medical sciences ; (6): 451-459, 2023.
Article Dans Anglais | WPRIM | ID: wpr-1009907

Résumé

Long non-coding RNAs (lncRNAs) are strongly related to the occurrence and development of digestive tract cancer in human. Firstly, lncRNAs target and regulate the expression of downstream cancer genes to affect the growth, metastasis, apoptosis, metabolism and immune escape of cancer cells. Secondly, lncRNAs are considered to be important regulating factors for lipid metabolism in cancer, which is related to signaling pathways of adipogenesis and involved in the occurrence and development of digestive tract cancer. Finally, lncRNAs have application value in the diagnosis and treatment of digestive tract cancer. For example, lncRNAMALAT1 has been reported as a target for diagnosis and treatment of hepatocellular carcinoma. This article reviews current progress on the regulatory role of lncRNAs in digestive tract cancer, to provide references for the research and clinical application in the prevention and treatment of digestive tract cancer.


Sujets)
Humains , ARN long non codant/génétique , Tumeurs gastro-intestinales/génétique , Apoptose , Tumeurs du foie
15.
Journal of Zhejiang University. Medical sciences ; (6): 397-405, 2023.
Article Dans Anglais | WPRIM | ID: wpr-1009902

Résumé

Long non-coding RNAs (lncRNAs) which are usually thought to have no protein coding ability, are widely involved in cell proliferation, signal transduction and other biological activities. However, recent studies have suggested that short open reading frames (sORFs) of some lncRNAs can encode small functional peptides (micropeptides). These micropeptides appear to play important roles in calcium homeostasis, embryonic development and tumorigenesis, suggesting their potential as therapeutic targets and diagnostic biomarkers. Currently, bioinformatic tools as well as experimental methods such as ribosome mapping and in vitro translation are applied to predict the coding potential of lncRNAs. Furthermore, mass spectrometry, specific antibodies and epitope tags are used for validating the expression of micropeptides. Here, we review the physiological and pathological functions of recently identified micropeptides as well as research strategies for predicting the coding potential of lncRNAs to facilitate the further research of lncRNA encoded micropeptides.


Sujets)
Femelle , Grossesse , Humains , ARN long non codant/génétique , Plan de recherche , Anticorps , Carcinogenèse ,
16.
Chinese Journal of Lung Cancer ; (12): 851-862, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1010093

Résumé

Lung cancer is one of the malignant tumors with the highest incidence and mortality rate in China, and its occurrence and development mechanism and treatment methods are the current research focuses. In recent years, the emergence of drugs targeting various tumor driver genes has significantly improved patients' survival and quality of life, setting off a wave of research on new therapeutic targets. Among them, long non-coding RNA (lncRNA) plays a crucial role in the malignant behavior of tumors, which has attracted widespread attention. Shown by a large number of studies, partial members of lncRNA small nucleolar RNA host gene (SNHG) family are aberrantly expressed in many maliglant tumors including non-small cell lung cancer (NSCLC) and participate in cell proliferation, invasion and migration, which may act as a new diagnostic and prognostic biomarker and can be a therapeutic target of NSCLC. In this review, we comprehensively summarize and explore the recent investigation of SNHGs in NSCLC in order to provide new ideas for the diagnosis and treatment of NSCLC.
.


Sujets)
Humains , Carcinome pulmonaire non à petites cellules/anatomopathologie , Tumeurs du poumon/anatomopathologie , ARN long non codant/génétique , Qualité de vie , Chine , Prolifération cellulaire/génétique , Régulation de l'expression des gènes tumoraux , Mouvement cellulaire , microARN/génétique , Lignée cellulaire tumorale
17.
Journal of Zhejiang University. Science. B ; (12): 1123-1140, 2023.
Article Dans Anglais | WPRIM | ID: wpr-1010587

Résumé

Breast cancer is a malignant tumor that seriously endangers women's lives. The prognosis of breast cancer patients differs among molecular types. Compared with other subtypes, triple-negative breast cancer (TNBC) has been a research hotspot in recent years because of its high degree of malignancy, strong invasiveness, rapid progression, easy of recurrence, distant metastasis, poor prognosis, and high mortality. Many studies have found that long non-coding RNA (lncRNA) plays an important role in the occurrence, proliferation, migration, recurrence, chemotherapy resistance, and other characteristics of TNBC. Some lncRNAs are expected to become biomarkers in the diagnosis and prognosis of TNBC, and even new targets for its treatment. Based on a PubMed literature search, this review summarizes the progress in research on lncRNAs in TNBC and discusses their roles in TNBC diagnosis, prognosis, and chemotherapy with the hope of providing help for future research.


Sujets)
Humains , Femelle , Tumeurs du sein triple-négatives/génétique , ARN long non codant/génétique , Marqueurs biologiques tumoraux/génétique , Régulation de l'expression des gènes tumoraux
18.
Journal of Zhejiang University. Science. B ; (12): 281-300, 2023.
Article Dans Anglais | WPRIM | ID: wpr-982368

Résumé

Non-exosomal non-coding RNAs (non-exo-ncRNAs) and exosomal ncRNAs (exo-ncRNAs) have been associated with the pathological development of myocardial infarction (MI). Accordingly, this analytical review provides an overview of current MI studies on the role of plasma non-exo/exo-ncRNAs. We summarize the features and crucial roles of ncRNAs and reveal their novel biological correlations via bioinformatics analysis. The following contributions are made: (1) we comprehensively describe the expression profile, competing endogenous RNA (ceRNA) network, and "pre-necrotic" biomarkers of non-exo/exo-ncRNAs for MI; (2) functional enrichment analysis indicates that the target genes of ncRNAs are enriched in the regulation of apoptotic signaling pathway and cellular response to chemical stress, etc.; (3) we propose an updated and comprehensive view on the mechanisms, pathophysiology, and biomarker roles of non-exo/exo-ncRNAs in MI, thereby providing a theoretical basis for the clinical management of MI.


Sujets)
Humains , ARN non traduit/génétique , ARN , Infarctus du myocarde/génétique , Marqueurs biologiques , Biologie informatique , microARN/génétique
19.
Journal of Central South University(Medical Sciences) ; (12): 750-759, 2023.
Article Dans Anglais | WPRIM | ID: wpr-982345

Résumé

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease caused by inflammatory cells. Various inflammatory cells involved in RA include fibroblast-like synoviocytes, macrophages, CD4+T-lymphocytes, B lymphocytes, osteoclasts and chondrocytes. The close interaction between various inflammatory cells leads to imbalance of immune response and disorder of the expression of mRNA in inflammatory cells. It helps to drive production of pro-inflammatory cytokines and stimulate specific antigen-specific T- and B-lymphocytes to produce autoantibodies which is an important pathogenic factor for RA. Competing endogenous RNA (ceRNA) can regulate the expression of mRNA by competitively binding to miRNA. The related ceRNA network is a new regulatory mechanism for RNA interaction. It has been found to be involved in the regulation of abnormal biological processes such as proliferation, apoptosis, invasion and release of inflammatory factors of RA inflammatory cells. Understanding the ceRNA network in 6 kinds of RA common inflammatory cells provides a new idea for further elucidating the pathogenesis of RA, and provides a theoretical basis for the discovery of new biomarkers and effective therapeutic targets.


Sujets)
Humains , Polyarthrite rhumatoïde/génétique , microARN/métabolisme , Cellules synoviales/anatomopathologie , Cytokines/métabolisme , ARN messager/métabolisme , Fibroblastes/anatomopathologie , Prolifération cellulaire
20.
Journal of Southern Medical University ; (12): 242-250, 2023.
Article Dans Chinois | WPRIM | ID: wpr-971521

Résumé

OBJECTIVE@#To screen the differentially expressed long non-coding RNAs (lncRNAs) in non-small cell lung cancer (NSCLC) cells with acquired resistance to osimertinib and explore their roles in drug resistance of the cells.@*METHODS@#The cell lines H1975_OR and HCC827_OR with acquired osimertinib resistance were derived from their osimertinib-sensitive parental NSCLC cell lines H1975 and HCC827, respectively, and their sensitivity to osimertinib was assessed with CCK-8 assay, clone formation assay and flow cytometry. RNA sequencing (RNA-seq) and real-time quantitative PCR (qPCR) were used to screen the differentially expressed lncRNAs in osimertinib-resistant cells. The role of the identified lncRNA in osimertinib resistance was explored using CCK-8, clone formation and Transwell assays, and its subcellular localization and downstream targets were analyzed by nucleoplasmic separation, bioinformatics analysis and qPCR.@*RESULTS@#The resistance index of H1975_OR and HCC827_OR cells to osimertinib was 598.70 and 428.82, respectively (P < 0.001), and the two cell lines showed significantly increased proliferation and colony-forming abilities with decreased apoptosis (P < 0.01). RNA-seq identified 34 differentially expressed lncRNAs in osimertinib-resistant cells, and among them lnc-TMEM132D-AS1 showed the highest increase of expression after acquired osimertinib resistance (P < 0.01). Analysis of the TCGA database suggested that the level of lnc-TMEM132D-AS1 was significantly higher in NSCLC than in adjacent tissues (P < 0.001), and its high expression was associated with a poor prognosis of the patients. In osimertinib-sensitive cells, overexpression of Lnc-TMEM132D-AS1 obviously promoted cell proliferation, colony formation and migration (P < 0.05), while Lnc-TMEM132D-AS1 knockdown partially restored osimertinib sensitivity of the resistant cells (P < 0.01). Lnc-TMEM132D-AS1 was localized mainly in the cytoplasm, and bioinformatics analysis suggested that hsa-miR-766-5p was its candidate target, and their expression levels were inversely correlated. The target mRNAs of hsa-miR-766-5p were mainly enriched in the Ras signaling pathway.@*CONCLUSION@#The expression of lnc-TMEM132D-AS1 is significantly upregulated in NSCLC cells with acquired osimertinib resistance, and may serve as a potential biomarker and therapeutic target for osimertinibresistant NSCLC.


Sujets)
Humains , Carcinome pulmonaire non à petites cellules/métabolisme , Tumeurs du poumon/génétique , ARN long non codant/métabolisme , Sincalide/métabolisme , Lignée cellulaire tumorale , Prolifération cellulaire/génétique , Mouvement cellulaire , microARN/génétique , Régulation de l'expression des gènes tumoraux , Protéines membranaires/métabolisme
SÉLECTION CITATIONS
Détails de la recherche