Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres








Gamme d'année
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 938-949, 2023.
Article Dans Anglais | WPRIM | ID: wpr-1011005

Résumé

Danshen, the dried roots and rhizomes of Salvia miltiorrhiza Bunge (S. miltiorrhiza), is widely used in the treatment of cardiovascular and cerebrovascular diseases. Tanshinones, the bioactive compounds from Danshen, exhibit a wide spectrum of pharmacological properties, suggesting their potential for future therapeutic applications. Tanshinone biosynthesis is a complex process involving at least six P450 enzymes that have been identified and characterized, most of which belong to the CYP76 and CYP71 families. In this study, CYP81C16, a member of the CYP71 clan, was identified in S. miltiorrhiza. An in vitro assay revealed that it could catalyze the hydroxylation of four para-quinone-type tanshinones, namely neocryptotanshinone, deoxyneocryptotanshinone, and danshenxinkuns A and B. SmCYP81C16 emerged as a potential broad-spectrum oxidase targeting the C-18 position of para-quinone-type tanshinones with an impressive relative conversion rate exceeding 90%. Kinetic evaluations andin vivo assays underscored its highest affinity towards neocryptotanshinone among the tested substrates. The overexpression of SmCYP81C16 promoted the accumulation of (iso)tanshinone in hairy root lines. The characterization of SmCYP81C16 in this study accentuates its potential as a pivotal tool in the biotechnological production of tanshinones, either through microbial or plant metabolic engineering.


Sujets)
Humains , Salvia miltiorrhiza/métabolisme , Voies de biosynthèse , Quinones/métabolisme , Racines de plante/métabolisme , Régulation de l'expression des gènes végétaux
2.
Acta Pharmaceutica Sinica B ; (6): 323-329, 2015.
Article Dans Anglais | WPRIM | ID: wpr-310020

Résumé

Neocryptotanshinone (NCTS) is a natural product isolated from traditional Chinese herb Salvia miltiorrhiza Bunge. In this study, we investigated its anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated mouse macrophage (RAW264.7) cells. MTT results showed that NCTS partly reversed LPS-induced cytotoxicity. Real-time PCR results showed that NCTS suppressed LPS-induced mRNA expression of inflammatory cytokines, including tumor necrosis factor α (TNFα), interleukin-6 (IL-6) and interleukin-1β (IL-1β). Moreover, NCTS could decrease LPS-induced nitric oxide (NO) production. Western blotting results showed that NCTS could down-regulate LPS-induced expression of inducible nitric oxide synthase (iNOS), p-IκBα, p-IKKβ and p-NF-κB p65 without affecting cyclooxygenase-2 (COX-2). In addition, NCTS inhibited LPS-induced p-NF-κB p65 nuclear translocation. In conclusion, these data demonstrated that NCTS showed anti-inflammatory effect by suppression of NF-κB and iNOS signaling pathways.

SÉLECTION CITATIONS
Détails de la recherche