Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 24
Filtre
1.
Journal of Clinical Hepatology ; (12): 1454-1460, 2023.
Article Dans Chinois | WPRIM | ID: wpr-978807

Résumé

Liver fibrosis is a compensatory response in the process of tissue repair after chronic liver injury, and it is also a necessary pathological process in the progression of a variety of chronic liver diseases. In the pathological state, the imbalance between hepatic oxidative system and antioxidant system can lead to the excessive production or insufficient clearance of reactive oxygen species (ROS)/reactive nitrogen species (RNS), which may induce the injury of hepatocytes, expand inflammatory response, and promote the development and progression of liver fibrosis. As a master regulator of oxidative stress and inflammatory response, NF-κB plays a key role in the process of liver fibrosis. Therefore, the cascade interaction between ROS/RNS and the NF-κB signaling pathway plays a guiding role in further clarifying the pathogenesis of liver fibrosis and exploring effective prevention and treatment strategies. This article reviews and discusses the interaction between ROS/RNS and the NF-κB signaling pathway and its important role in the progression of liver fibrosis, so as to provide strategies and references for targeted therapy for liver fibrosis.

2.
Acta Pharmaceutica Sinica ; (12): 2785-2792, 2020.
Article Dans Chinois | WPRIM | ID: wpr-862277

Résumé

Reactive nitrogen species (RNS) affects intracellular redox balance and induces post-translational modification of proteins. Moreover, RNS, as the signal molecule, participates in the transduction of cellular signals under physiological conditions. However, excessive RNS can induce nitrosative stress and then damage cells, and thereby may play a role in the tumor initiation and progression. Thus, we discussed the role of RNS under physiological conditions and the tumor microenvironment, which may provide some novel ideas for the development of new drugs and the treatment of diseases.

3.
Int. j. morphol ; 36(4): 1310-1315, Dec. 2018. tab, graf
Article Dans Anglais | LILACS | ID: biblio-975701

Résumé

Exposure to normobaric hyperoxia (NH) is known to increase the production of reactive oxygen species (ROS) by mitochondria. The present study was designed to examine mitochondrial ultrastructure morphological changes in the cortical brainin relation to glutathione peroxidase (GPX) activity and free radicals (FR) productions in brain tissue during hyperoxia exposure. The experimental groups were exposed to NH for 24 and 48 h continuously. Following the exposure periods, animals were sacrificed and cortical tissues were divided randomly into two parts; the first part was processed for the ultrastructural examination and the second was homogenized for GPX and FR determinations. Analysis of variance (ANOVA) showed that the main effects of O2 exposure periods were significant (p<0.05) for GPX and FR. Pair-wise means comparisons showed that NH elevated the average (+SE) GPX activity significantly (p<0.05) from the baseline control value of 5670.99+556.34 to13748.42+283.04 and 15134.19+1529.26 U/L with increasing length of NH exposure period from 24 to 48 h, respectively. Similarly, FR production was increased significantly (p<0.05) to 169.73+10.31 and 185.33+21.87, above baseline control of 105.27+5.25 Unit. Ultrastructure examination showed that O2 breathing for 48 h resulted in giant and swelled mitochondria associated with diluted inner membrane and damaged cristae. These mitochondria pathological alterations were associated with damages of myelin, axonal and cellular organelles. Normobaric-hyperoxia inducts mitochondria oxidative stress (MOS) and the subsequent rise of ROS causes variety of ultrastructure morphological pathological alterations in the organelles of cortical brain cells.


Se sabe que la exposición a la hiperoxia normobárica (HN) aumenta la producción de especies reactivas de oxígeno (ERO) por parte de las mitocondrias. El estudio se diseñó para examinar los cambios morfológicos de la ultraestructura mitocondrial en la corteza cerebral con la actividad de la glutatión peroxidasa (GPX) y la producción de radicales libres (RL) en el tejido cerebral durante la exposición a la hiperoxia. Los grupos experimentales fueron expuestos a HN durante 24 y 48 h continuamente. Tras los períodos de exposición, los animales se sacrificaron y los tejidos corticales se dividieron aleatoriamente en dos partes; la primera parte se procesó para el examen ultraestructural y la segunda se homogeneizó para las determinaciones de GPX y RL. El análisis de varianza (ANOVA) mostró que los efectos principales de los períodos de exposición al O2 fueron significativos (p <0,05) para GPX y RL. Las comparaciones de medias por pares mostraron que la HN elevó la actividad promedio de GPX (+ SE) significativamente (p <0,05) desde el valor de control de línea base de 5670,99 + 556,34 a 13748,42 + 283,04 y 15134,19 + 1529,26 U / L con una mayor duración del período de exposición a HN de 24 a 48 h, respectivamente. De manera similar, la producción de RL se incrementó significativamente (p <0,05) a 169,73 + 10,31 y 185,33 + 21,87, por encima del control de referencia de 105,27 + 5,25 unidades. El examen de la ultraestructura mostró que la respiración de O2 durante 48 h dio lugar a mitocondrias gigantes e hinchadas asociadas con la membrana interna diluida y las crestas dañadas. Estas alteraciones patológicas de las mitocondrias se asociaron con daños de mielina, axones y organelos celulares. La hiperoxia normobárica induce el estrés oxidativo mitocondrial (MOS) y el posterior aumento de las ERO provoca una variedad de alteraciones patológicas y morfológicas en los organelos de las células cerebrales corticales.


Sujets)
Animaux , Rats , Cortex cérébral/ultrastructure , Hyperoxie/anatomopathologie , Mitochondries/anatomopathologie , Cortex cérébral/enzymologie , Cortex cérébral/anatomopathologie , Analyse de variance , Espèces réactives de l'oxygène , Rat Wistar , Espèces réactives de l'azote , Glutathione peroxidase/métabolisme , Mitochondries/ultrastructure
4.
Article | IMSEAR | ID: sea-183982

Résumé

Generally Reactive oxygen species (ROS) and Reactive nitrogen species (RNS) consist of free radicals and hasty species in these two groups and breakdown yield of lipids proteins, nucleic acids and carbohydrates. Free radicals (FR) contain one or more unpaired electrons and could be positively or negatively charged or neutral in nature. Superoxide anion (O-.2), free hydroxyl radical (OH.-) and nitric oxide (NO·) are important free radicals in human body and produce numerous additional free radicals mostly from unsaturated fatty acids. Physiologically they can be defined as overactive disjointed atoms or molecules which are capable of upsetting and fragmenting other molecules. Free hydroxyl is the mainly reactive neutral free radical with half life of about 10-9 second. It is capable of insulting fragmenting and mutating any cellular molecule with forceful passion. Superoxide anion (O-.2) in human body arises from metabolic reactions, irradiation and leakage from electron transport chain. Superoxide is often referred as primary ROS as most of other ROS and RNS arise from it and are therefore termed as secondary ROS and RNS. These free radicals are produced in cellular membrane mitochondria, nucleus, lysosomes, peroxisomes, endoplasmic reticulum and cytoplasm. Redox-sensitive proteins with important cellular functions are confined to signalling microdomains in cardiovascular cells and are not readily available for quantification. A popular approach is the measurement of stable by-products modified under conditions of oxidative strain that have entered the circulation. However, these may not accurately reflect redox stress at the cell/tissue height. Many of these modifications are “functionally silent”. Functional importance of the oxidative modifications enhances their validity as a proposed biological marker of cardiovascular disease, and is the strength of the redox cysteine modifications such as glutathionylation. We assess selected biomarkers of oxidative stress that show promise in cardiovascular medicine, as well as new methodologies for high-throughput measurement in research and clinical settings. Although associated with disease severity, supplementary studies are necessary to examine the usefulness of the most promise oxidative biomarkers to forecast prognosis or rejoinder to treatment.

5.
Environmental Health and Preventive Medicine ; : 50-50, 2018.
Article Dans Anglais | WPRIM | ID: wpr-777655

Résumé

Infection and inflammation account for approximately 25% of cancer-causing factors. Inflammation-related cancers are characterized by mutagenic DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Our previous studies demonstrated the formation of 8-oxodG and 8-nitroguanine in the tissues of cancer and precancerous lesions due to infection (e.g., Opisthorchis viverrini-related cholangiocarcinoma, Schistosoma haematobium-associated bladder cancer, Helicobacter pylori-infected gastric cancer, human papillomavirus-related cervical cancer, Epstein-Barr virus-infected nasopharyngeal carcinoma) and pro-inflammatory factors (e.g., asbestos, nanomaterials, and inflammatory diseases such as Barrett's esophagus and oral leukoplakia). Interestingly, several of our studies suggested that inflammation-associated DNA damage in cancer stem-like cells leads to cancer development with aggressive clinical features. Reactive oxygen/nitrogen species from inflammation damage not only DNA but also other biomacromolecules, such as proteins and lipids, resulting in their dysfunction. We identified oxidatively damaged proteins in cancer tissues by 2D Oxyblot followed by MALDI-TOF/TOF. As an example, oxidatively damaged transferrin released iron ion, which may mediate Fenton reactions and generate additional reactive oxygen species. Dysfunction of anti-oxidative proteins due to this damage might increase oxidative stress. Such damage in biomacromolecules may form a vicious cycle of oxidative stress, leading to cancer development. Epigenetic alterations such as DNA methylation and microRNA dysregulation play vital roles in carcinogenesis, especially in inflammation-related cancers. We examined epigenetic alterations, DNA methylation and microRNA dysregulation, in Epstein-Barr virus-related nasopharyngeal carcinoma in the endemic area of Southern China and found several differentially methylated tumor suppressor gene candidates by using a next-generation sequencer. Among these candidates, we revealed higher methylation rates of RAS-like estrogen-regulated growth inhibitor (RERG) in biopsy specimens of nasopharyngeal carcinoma more conveniently by using restriction enzyme-based real-time PCR. This result may help to improve cancer screening strategies. We profiled microRNAs of nasopharyngeal carcinoma tissues using microarrays. Quantitative RT-PCR analysis confirmed the concordant downregulation of miR-497 in cancer tissues and plasma, suggesting that plasma miR-497 could be used as a diagnostic biomarker for nasopharyngeal carcinoma. Chronic inflammation promotes genetic and epigenetic aberrations, with various pathogeneses. These changes may be useful biomarkers in liquid biopsy for early detection and prevention of cancer.


Sujets)
Animaux , Humains , Souris , Altération de l'ADN , Épigenèse génétique , Inflammation , Allergie et immunologie , Tumeurs , Génétique , Allergie et immunologie , Espèces réactives de l'azote , Métabolisme , Espèces réactives de l'oxygène , Métabolisme
6.
Journal of Nutrition and Health ; : 288-294, 2016.
Article Dans Anglais | WPRIM | ID: wpr-195326

Résumé

PURPOSE: The aim of this work was to investigate the beneficial effects of rhamnazin against inflammation, reactive oxygen species (ROS)/reactive nitrogen species (RNS), and anti-oxidative activity in murine macrophage RAW264.7 cells. METHODS: To examine the beneficial properties of rhamnazin on inflammation, ROS/ RNS, and anti-oxidative activity in the murine macrophage RAW264.7 cell model, several key markers, including COX and 5-LO activities, NO•, ONOO-, total reactive species formation, lipid peroxidation, •O₂ levels, and catalase activity were estimated. RESULTS: Results show that rhamnazin was protective against LPS-induced cytotoxicity in macrophage cells. The underlying action of rhamnazin might be through modulation of ROS/RNS and anti-oxidative activity through regulation of total reactive species production, lipid peroxidation, catalase activity, and •O₂, NO•, and ONOO• levels. In addition, rhamnazin down-regulated the activities of pro-inflammatory COX and 5-LO. CONCLUSION: The plausible action by which rhamnazin renders its protective effects in macrophage cells is likely due to its capability to regulate LPS-induced inflammation, ROS/ RNS, and anti-oxidative activity.


Sujets)
Arachidonate 5-lipoxygenase , Catalase , Inflammation , Peroxydation lipidique , Macrophages , Azote , Espèces réactives de l'azote , Espèces réactives de l'oxygène
7.
Indian J Ophthalmol ; 2014 Jan ; 62 (1): 16-22
Article Dans Anglais | IMSEAR | ID: sea-155500

Résumé

Purpose: Our goal was to identify the cellular and molecular effects of 2-ethylpyridine (2-EP, a component of cigarette smoke) on human retinal pigment epithelial cells (ARPE-19) in vitro. Materials and Methods: ARPE-19 cells were exposed to varying concentrations of 2-EP. Cell viability (CV) was measured by a trypan blue dye exclusion assay. Caspase-3/7 and caspase-9 activities were measured by fl uorochrome assays. The production of reactive oxygen/nitrogen species (ROS/RNS) was detected with a 2’,7’-dichlorodihydrofl uorescein diacetate dye assay. The JC-1 assay was used to measure mitochondrial membrane potential (m). Mitochondrial redox potential was measured using a RedoxSensor Red kit and mitochondria were evaluated with Mitotracker dye. Results: Aft er 2-EP exposure, ARPE-19 cells showed signifi cantly decreased CV, increased caspase-3/7 and caspase-9 activities, elevated ROS/RNS levels, decreased m value and decreased redox fl uorescence when compared with control samples. Conclusions: These results show that 2-EP treatment induced cell death by caspase-dependent apoptosis associated with an oxidative stress and mitochondrial dysfunction. These data represent a possible mechanism by which smoking contributes to age-related macular degeneration and other retinal diseases and identify mitochondria as a target for future therapeutic interventions.

8.
International Journal of Oral Biology ; : 207-213, 2014.
Article Dans Coréen | WPRIM | ID: wpr-149978

Résumé

Antimicrobial actions of reactive oxygen/nitrogen species (ROS/RNS) derived from products of NADPH oxidase and inducible nitric oxide (NO) synthase in host phagocytes inactivate various bacterial macromolecules. To cope with these cytotoxic radicals, pathogenic bacteria have evolved to conserve systems necessary for detoxifying ROS/RNS and repairing damages caused by their actions. In response to these stresses, bacteria also induce expression of molecular chaperones to aid in ameliorating protein misfolding. In this study, we explored the function of a newly identified chaperone Spy, that is localized exclusively in the periplasm when bacteria exposed to conditions causing spheroplast formation, in the resistance of Salmonella Typhimurium to ROS/RNS. A spy deletion mutant was constructed in S. Typhimurium by a PCR-mediated method of one-step gene inactivation with lambda Red recombinase, and subjected to ROS/RNS stresses. The spy mutant Salmonella showed a modest decrease in growth rate in NO-producing cultures, and no detectable difference of growth rate in H2O2 containing cultures, compared with that of wild type Salmonella. Quantitative RT-PCR analysis showed that spy mRNA levels were similar regardless of both stresses, but were increased considerably in Salmonella mutants lacking the flavohemoglobin Hmp, which are incapable of NO detoxification, and lacking an alternative sigma factor RpoS, conferring hypersusceptibility to H2O2. Results demonstrate that Spy expression can be induced under extreme conditions of both stresses, and suggest that the protein may have supportive roles in maintaining proteostasis in the periplasm where various chaperones may act in concert with Spy, thereby protecting bacteria against toxicities of ROS/RNS.


Sujets)
Bactéries , Extinction de l'expression des gènes , Chaperons moléculaires , NADPH oxidase , Monoxyde d'azote , Périplasme , Phagocytes , Espèces réactives de l'azote , Espèces réactives de l'oxygène , Recombinases , ARN messager , Salmonella typhimurium , Salmonella , Facteur sigma , Sphéroplastes
9.
Article Dans Anglais | IMSEAR | ID: sea-152999

Résumé

Free radicals play a significant role in the pathogenesis of many chronic diseases such as diabetes mellitus, cancer, chronic renal failure etc. Oxidative stress is defined as “a disturbance in the balance between the antioxidants and pro-oxidants (OFR in particular) with increased levels of pro-oxidants leading to potential damage. The knowledge about pathophysiology of lipid peroxidation and the oxidative stress biomarkers will definitely help the researchers to plan for focused study for better management of oxidative stress induced diseases.

10.
Hanyang Medical Reviews ; : 130-136, 2013.
Article Dans Coréen | WPRIM | ID: wpr-86600

Résumé

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are natural by-products of cellular physiological processes involving metabolism of compounds containing oxygen and nitrogen, respectively. Physiological defense mechanisms against ROS/RNS readily convert them into water or urea, but dysregulation of ROS/RNS production damages cells resulting in abnormal conditions such as uncontrolled growth or cell death. ROS/RNS are closely related to the development of a variety of diseases such as cancer, diabetes, neurodegeneration, vascular disease and chronic inflammation. Thus, it has been proposed that the removal of ROS/RNS may prevent or treat oxidative stress-induced diseases. Some antioxidant molecules are synthesized in the body, while others are obtained from food in the diet including fruits, vegetables, meat and even in natural water. In addition to the natural antioxidants, synthetic antioxidants have been modified from natural chemicals so as to increase bioavailability to target organs and increase stability in the air. In developing novel antioxidants for therapeutic use, some factors to consider are: 1) improved efficacy; 2) low side effects (comparatively clear mechanism); 3) competitive price and 4) improved convenience of dosing. In this review, we will discuss the issues mentioned above and the use of antioxidants in clinical application.


Sujets)
Antioxydants , Biodisponibilité , Mort cellulaire , Mécanismes de défense , Régime alimentaire , Fruit , Inflammation , Viande , Azote , Oxygène , Phénomènes physiologiques , Espèces réactives de l'azote , Espèces réactives de l'oxygène , Urée , Maladies vasculaires , Légumes , Eau
11.
The Korean Journal of Internal Medicine ; : 216-223, 2013.
Article Dans Anglais | WPRIM | ID: wpr-123029

Résumé

BACKGROUND/AIMS: Ozone is an environmentally reactive oxidant, and pycnogenol is a mixture of flavonoid compounds extracted from pine tree bark that have antioxidant activity. We investigated the effects of pycnogenol on reactive nitrogen species, antioxidant responses, and airway responsiveness in BALB/c mice exposed to ozone. METHODS: Antioxidant levels were determined using high performance liquid chromatography with electrochemical detection. Nitric oxide (NO) metabolites in bronchoalveolar lavage (BAL) fluid from BALB/c mice in filtered air and 2 ppm ozone with pycnogenol pretreatment before ozone exposure (n = 6) were quantified colorimetrically using the Griess reaction. RESULTS: Uric acid and ascorbic acid concentrations were significantly higher in BAL fluid following pretreatment with pycnogenol, whereas gamma-tocopherol concentrations were higher in the ozone exposed group but were similar in the ozone and pycnogenol pretreatment groups. Retinol and gamma-tocopherol concentrations tended to increase in the ozone exposure group but were similar in the ozone and pycnogenol pretreatment groups following ozone exposure. Malonylaldehyde concentrations increased in the ozone exposure group but were similar in the ozone and pycnogenol plus ozone groups. The nitrite and total NO metabolite concentrations in BAL fluid, which parallel the in vivo generation of NO in the airways, were significantly greater in the ozone exposed group than the group exposed to filtered air, but decreased with pycnogenol pretreatment. CONCLUSIONS: Pycnogenol may increase levels of antioxidant enzymes and decrease levels of nitrogen species, suggesting that antioxidants minimize the effects of acute ozone exposure via a protective mechanism.


Sujets)
Animaux , Femelle , Souris , Antioxydants/pharmacologie , Acide ascorbique/métabolisme , Hyperréactivité bronchique/induit chimiquement , Liquide de lavage bronchoalvéolaire/composition chimique , Bronchoconstriction/effets des médicaments et des substances chimiques , Modèles animaux de maladie humaine , Flavonoïdes/pharmacologie , Exposition par inhalation , Poumon/effets des médicaments et des substances chimiques , Malonaldéhyde/métabolisme , Souris de lignée BALB C , Monoxyde d'azote/métabolisme , Stress oxydatif/effets des médicaments et des substances chimiques , Ozone , Acide urique/métabolisme , Rétinol/métabolisme , alpha-Tocophérol/métabolisme
12.
Diabetes & Metabolism Journal ; : 106-112, 2013.
Article Dans Anglais | WPRIM | ID: wpr-128752

Résumé

A growing body of evidence suggests that hyperglycemia-induced oxidative stress plays an important role in diabetic complications, especially beta-cell dysfunction and failure. Under physiological conditions, reactive oxygen species serve as second messengers that facilitate signal transduction and gene expression in pancreatic beta-cells. However, under pathological conditions, an imbalance in redox homeostasis leads to aberrant tissue damage and beta-cell death due to a lack of antioxidant defense systems. Taking into account the vulnerability of islets to oxidative damage, induction of endogenous antioxidant enzymes or exogenous antioxidant administration has been proposed as a way to protect beta-cells against diabetic insults. Here, we consider recent insights into how the redox response becomes deregulated under diabetic conditions, as well as the therapeutic benefits of antioxidants, which may provide clues for developing strategies aimed at the treatment or prevention of diabetes associated with beta-cell failure.


Sujets)
Antioxydants , Choristome , Complications du diabète , Expression des gènes , Homéostasie , Monoxyde d'azote , Oxydoréduction , Stress oxydatif , Espèces réactives de l'azote , Espèces réactives de l'oxygène , Systèmes de seconds messagers , Transduction du signal , Superoxide dismutase
13.
Japanese Journal of Physical Fitness and Sports Medicine ; : 297-306, 2012.
Article Dans Anglais | WPRIM | ID: wpr-374218

Résumé

Repeated contractions of skeletal muscle cause fatigue, as manifested by a reduced ability to produce force and slowed contraction. During studies of muscle fatigue, a phenomenon known as low-frequency fatigue (LFF) was observed in human skeletal muscles. It is characterized by a greater loss of force in response to low- versus high-frequency muscle stimulation and a long period of time for full recovery. This force deficit is most likely to be owing to disturbances in sarcoplasmic reticulum (SR) Ca<sup>2+</sup> release and/or reductions in myofibrillar Ca<sup>2+</sup> sensitivity. Studies on metabolites have implied that inorganic phosphate and Mg<sup>2+</sup> might have some role in reduced SR Ca<sup>2+</sup> release that occurs immediately after fatiguing contraction. In addition, recent experiments have shown that impaired myofibril function may relate to increased nitric oxide and hydroxyl radical production, whereas deterioration of SR function may be attributable to increased superoxide production, elevation of cytoplasmic Ca<sup>2+</sup> concentration and/or decreased muscle glycogen. Finally, we will discuss possible proteins which are affected and contribute to the development of LFF.

14.
Asian Pacific Journal of Tropical Biomedicine ; (12): 632-636, 2012.
Article Dans Chinois | WPRIM | ID: wpr-672592

Résumé

Objective: To investigate Schima wallichii (S. wallichii) Choisy (Ternstroemiaceae) which is a well known plant of Sikkim in the Himalayan region, India. Methods: Therefore three major flavonoid enriched fractions (FPet.Ether, FChloroform and FEthylacetate) were isolated by petroleum ether chloroform and ethyl acetate successively. The reactive nitrogen species scavenging activity of the flavonoid fractions was established using biochemical assay to measure scavenging of 2, 2 diphenyl picrylhydrazyl (DPPH), nitric oxide (NO) and peroxinitrite. Results: FEthylacetate showed maximum scavenging activity: their IC50 being (7.33 ± 3.32), (7.11 ± 2.21), and (6.67 ± 2.23)μg/mL in DPPH, NO, peroxinitrite radical respectively. Presence of (57.32 ± 2.31) and (163.4 ±2.22) μg of flavonoids and phenolic compound in 1 mg of extract is assumed to be responsible for free radical scavenging activity. Conclusion: Taken together S. wallichii has potent free radical scavenging property indicating its importance in food supplement as a rich source of active flavonoid and phenolic compounds in ethyl acetate fraction which is responsible for its free radical scavenging as well as antioxidant activity.

15.
Diabetes & Metabolism Journal ; : 190-198, 2012.
Article Dans Anglais | WPRIM | ID: wpr-11716

Résumé

Macrovascular and microvascular diseases are currently the principal causes of morbidity and mortality in subjects with diabetes. Disorders of the physiological signaling functions of reactive oxygen species (superoxide and hydrogen peroxide) and reactive nitrogen species (nitric oxide and peroxynitrite) are important features of diabetes. In the absence of an appropriate compensation by the endogenous antioxidant defense network, increased oxidative stress leads to the activation of stress-sensitive intracellular signaling pathways and the formation of gene products that cause cellular damage and contribute to the vascular complications of diabetes. It has recently been suggested that diabetic subjects with vascular complications may have a defective cellular antioxidant response against the oxidative stress generated by hyperglycemia. This raises the concept that antioxidant therapy may be of great benefit to these subjects. Although our understanding of how hyperglycemia-induced oxidative stress ultimately leads to tissue damage has advanced considerably in recent years, effective therapeutic strategies to prevent or delay the development of this damage remain limited. Thus, further investigation of therapeutic interventions to prevent or delay the progression of diabetic vascular complications is needed.


Sujets)
Indemnités compensatoires , Angiopathies diabétiques , Hydrogène , Hyperglycémie , Azote , Stress oxydatif , Oxygène , Espèces réactives de l'azote , Espèces réactives de l'oxygène
16.
Rev. nutr ; 23(4): 629-643, jul.-ago. 2010. ilus, tab
Article Dans Portugais | LILACS | ID: lil-569135

Résumé

O estresse oxidativo decorre de um desequilíbrio entre a geração de compostos oxidantes e a atuação dos sistemas de defesa antioxidante. A geração de radicais livres e/ou espécies reativas não radicais é resultante do metabolismo de oxigênio. A mitocôndria, por meio da cadeia transportadora de elétrons, é a principal fonte geradora. O sistema de defesa antioxidante tem a função de inibir e/ou reduzir os danos causados pela ação deletéria dos radicais livres e/ou espécies reativas não radicais. Esse sistema, usualmente, é dividido em enzimático (superóxido dismutase, catalase e glutationa peroxidase) e não-enzimático. No último caso, é constituído por grande variedade de substâncias antioxidantes, que podem ter origem endógena ou dietética. Objetivou-se revisar os principais mecanismos de geração de radicais livres, bem como a ação dos agentes mais relevantes do sistema de defesa antioxidante, ressaltando suas implicações sobre os marcadores do estresse oxidativo. Também serão abordados os principais fatores exógenos moduladores do estresse oxidativo.


There is evidence that oxidative stress, defined as a persistent imbalance between the production of highly oxidative compounds and antioxidant defenses, leads to tissue damage. Oxygen metabolism generates free radicals and/or non-radical reactive oxygen species. The mitochondria, through the electron transport chain, are the main generator of these species. The antioxidant defense system has the function of inhibiting and/or reducing the damage caused by the deleterious free radicals and/or non-radical reactive oxygen species. This system is divided into enzymatic (superoxide dismutase, catalase and glutathione peroxidase), and nonenzymatic. The nonenzymatic system consists of a variety of antioxidant substances, which may be endogenous or dietary. This study proposed to review the main mechanisms of reactive oxygen species generation and the role of the most relevant agents of the antioxidant defense system on the biomarkers of oxidative stress. The main exogenous factors that modulate oxidative stress will also be discussed.


Sujets)
Antioxydants/pharmacologie , Stress oxydatif , Radicaux libres/pharmacologie
17.
Indian J Biochem Biophys ; 2010 June; 47(3): 141-147
Article Dans Anglais | IMSEAR | ID: sea-135258

Résumé

The role of proanthocyanidins (PC), a novel flavonoid extracted from grape seeds was studied in vitro in the modulation of neutrophil and macrophage function. We attempted to assess the levels of non-enzymatic and enzymatic mediators in the presence or absence of PC in 4-phorbol-12--myristate-13-acetate (PMA)-stimulated neutrophils isolated from humans and rats, E. coli endotoxin-stimulated macrophages and macrophages isolated from E. coli endotoxin-induced experimental periodontitis in rats. Addition of PC at a concentration of 50 µg/ml effectively blocked the release of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and exhibited a marked inhibition of myeloperoxidase (MPO) and lysosomal enzymes (p<0.001), as compared to PMA-stimulated neutrophils (human and rats) and neutrophils isolated from experimental periodontitis in rats. The levels of ROS, RNS and lysosomal enzymes were found to be elevated (p<0.001) and addition of PC significantly (p<0.001) reduced these levels as compared to those from E. coli endotoxin-stimulatedmacrophages from rats and macrophages isolated from experimental periodontitis in rats (p<0.001). Thus, the study demonstrated that PC decreased the levels of ROS and RNS and also inhibited the MPO and lysosomal enzymes activities in experimental periodontitis in rats. In addition, this study clearly indicated that PC could be developed as an effective antiinflammatory agent.


Sujets)
Animaux , Anti-inflammatoires non stéroïdiens/pharmacologie , Humains , Lysosomes/effets des médicaments et des substances chimiques , Lysosomes/enzymologie , Macrophages péritonéaux/effets des médicaments et des substances chimiques , Macrophages péritonéaux/métabolisme , Mâle , Granulocytes neutrophiles/effets des médicaments et des substances chimiques , Granulocytes neutrophiles/métabolisme , Parodontite/traitement médicamenteux , Parodontite/métabolisme , Myeloperoxidase/antagonistes et inhibiteurs , Proanthocyanidines/pharmacologie , Rats , Rat Wistar , Espèces réactives de l'azote/métabolisme , Espèces réactives de l'oxygène/métabolisme
18.
Arq. bras. cardiol ; 94(5): 684-693, maio 2010. ilus
Article Dans Anglais, Portugais | LILACS | ID: lil-548097

Résumé

Vários estudos destacam as espécies reativas de oxigênio e nitrogênio (ERONs) como importantes contribuintes na patogênese de numerosas doenças cardiovasculares, incluindo hipertensão, aterosclerose e falência cardíaca. Tais espécies são moléculas altamente bioativas e com vida curta derivadas, principalmente, da redução do oxigênio molecular. O complexo enzimático da NADPH oxidase é a maior fonte dessas espécies reativas na vasculatura. Sob condições fisiológicas, a formação e eliminação destas substâncias aparecem balanceadas na parede vascular. Durante o desbalanço redox, entretanto, há um aumento na atividade da NADPH oxidase e predomínio de agentes pró-oxidantes, superando a capacidade de defesa orgânica antioxidante. Além disso, tal hiperatividade enzimática reduz a biodisponibilidade do óxido nítrico, crucial para a vasodilatação e a manutenção da função vascular normal. Apesar de a NADPH oxidase relacionar-se diretamente à disfunção endotelial, foi primeiramente descrita por sua expressão em fagócitos, onde sua atividade determina a eficácia dos mecanismos de defesa orgânica contra patógenos. As sutis diferenças existentes entre as unidades estruturais das NADPH oxidases, a depender do tipo celular que as expressa, podem ter implicações terapêuticas, permitindo a inibição seletiva do desequilíbrio redox induzido pela NADPH oxidase, sem comprometer, entretanto, sua participação nas vias fisiológicas de sinalização celular que garantem a proteção contra microorganismos.


Several studies refer to reactive oxygen and nitrogen species (RONS) as important agents in the pathogenesis of a number of heart diseases, including high blood pressure, arteriosclerosis and heart failure. Such species are highly bioactive molecules and a short life due chiefly to reduction of molecular oxygen. The enzyme complex of NADPH oxidase is the main source of these reactive species in vascular system. Under physiological conditions, formation and elimination of these substances seem balanced in vascular wall. During redox Unbalance, nonetheless, there is increase in NADPH oxidase activity and predominance of pro-oxidizing agents, surpassing the anti-oxidant capacity of the organism self-defense. Besides this, such enzyme hyperactivity reduces the bioavailability of nitric oxide, capital for vasodilation and maintenance of normal vascular function. In spite of NADPH oxidase being directly connected to the endothelial dysfunction, it was firstly described as for its expression in phagocytes, where its activity determines efficiency of organism defense mechanisms against pathogens. Slight differences between structural units of NADPH oxidases, depending on the type of cell which expresses it, may create therapeutic implications, allowing to selectively inhibiting redox unbalance triggered by NADPH oxidase, without compromising, however, its participation in physiological cellular signaling which make sure protection against micro-organisms.


Sujets)
Humains , Hypertension artérielle/thérapie , NADPH oxidase/antagonistes et inhibiteurs , Pression sanguine/physiologie , Hypertension artérielle/enzymologie , NADPH oxidase/génétique , Oxydoréduction
19.
Med. UIS ; 22(1): 41-54, ene.-abr. 2009. graf
Article Dans Espagnol | LILACS | ID: lil-612986

Résumé

El óxido nítrico es un regulador multifuncional, fundamental para diversos procesos incluyendo la inflamación, vasoregulación, señalización intra e intercelular, apoptosis y carcinogénesis. La falla en la síntesis y/o la pérdida de la biodisponibilidad de óxido nítrico es la principal característica de muchas enfermedades. La comprensión de los mecanismos subyacentes a los efectos del óxido nítrico a nivel celular y tisular, permitirá el desarrollo de nuevas terapias para balancear los efectos del óxido nítrico in vivo. El objetivo de esta revisión es mencionar los principales hallazgos en el campo de investigación relativo a este gas diatómico y su dinámica biológica...


Nitric oxide is a multifunctional regulator, which is central to diverse processes including infl ammation, vasoregulation, intra and intercellular signaling, apoptosis, and carcinogenesis. The failure in the synthesis and/or loss of bioavailability of nitric oxide is the main characteristic of many diseases. Understanding the mechanisms underlying the effects of nitric oxide at the cellular and tissue level, will allow the development of new therapies to balance the effects of nitric oxide in vivo. The purpose of this review is to mention the key findings in the field of research on this diatomic gas and their biological dynamics...


Sujets)
Antioxydants , Monoxyde d'azote , Oxygène , Inflammation , Vasodilatation
20.
São Paulo; s.n; 2009. [146] p. ilus.
Thèse Dans Portugais | LILACS | ID: lil-587171

Résumé

Sepse, a resposta do organismo a uma infecção, está associada a altas taxas de mortalidade. A razão pela qual um mecanismo protetor resulta num quadro clínico fatal permanece inexplicada. Em trabalho prévio nosso grupo demonstrou que exossomos de origem plaquetária são os mais frequentes em plasma de pacientes com choque séptico e que estes podem induzir apoptose em células musculares lisas vasculares e células endoteliais em cultura. Demonstramos ainda que tais exossomos possuíam uma fonte enzimática de ROS, uma NADPH oxidase cuja atividade poderia estar associada à indução da apoptose (Janiszewski et al., 2004). No presente trabalho, nós buscamos criar um modelo de geração ex vivo de exossomos similares aos encontrados em pacientes sépticos e identificar possíveis vias responsáveis pela liberação destes e seus efeitos. Choque séptico é uma condição relacionada com exposição a lipopolissacarídeo (LPS) e geração de alta quantidade de trombina, TNF e espécies reativas de nitrogênio. Através de citometria de fluxo revelamos que plaquetas humanas expostas ao doador de NO dietilamina-NONOato e ao LPS geraram exossomos similares àqueles encontrados em pacientes com choque séptico, expondo alta quantidade de tetraspaninas CD9, CD63 e CD81 mas pouca fosfatidilserina. Por outro lado, plaquetas expostas à trombina ou TNF liberaram partículas com características claramente distintas, com alta exposição de fosfatidilserina e baixa de tetraspaninas. Assim como os exossomos sépticos, os exossomos obtidos pela exposição de NO e LPS geraram radical superóxido e NO, como demonstrado pela quimioluminescência da lucigenina (5M) e celenterazinina (5M) e pela fluorescência da 4,5-diaminofluoresceína (10mM) e 2,7-diclorofluoresceína (10mM). A análise por Western Blot nos permitiu identificar as subunidades Nox1, Nox2 e p22phox da NADPH oxidase e a isoforma induzível da enzima NO sintase (NOS) nesses exossomos. Como esperado, inibidores da NOS e da NADPH oxidase...


Sepsis, the bodys response to infection, is associated with high mortality rates. Why a protective mechanism turns into a deadly clinical picture is a matter of debate, and goes largely unexplained. In previous work we demonstrated that plateled derived exosomes are found in the plasma of septic patients with septic shock and can induce endothelial and vascular smooth muscle cell apoptosis in culture through an enzymatic superoxide source (Janiszewski et al., 2004). In this work we sought to create a model for ex vivo generation of exosomes, and to identify the pathways responsible for ROS release by exosomes and their effects. Septic shock is a condition related to exposure of lipopolysaccharide (LPS), generation of high amounts of thrombin, TNF and nitrogen reactive species. Through flow cytometry we demonstrated that human platelets exposed to the NO-donor diethylamine-NONOate, and to LPS, generated exosomes similar to those found in the blood of septic shock patients, with high exposure of the tetraspanin CD9, CD63, and CD81, but little phosphatidylserine. On the other hand, platelets exposed to thrombin or TNF released particles with clearly distinct characteristics, such as high phosphatidylserine and low tetraspanin. Like the septic exosomes, the exosomes obtained by NO and LPS exposure generated superoxide radical and NO, as disclosed by lucigenin and coelenterazine chemiluminescence and by 4,5-diaminofluorescein and 2,7-dichlorofluorescein fluorescence. Western Blot analysis revealed the presence of Nox1, Nox2 and p22phox NADPH oxidase subunits and the inducible isoform of NO synthase (NOS) in these exosomes. As expected, NOS inhibitors or NADPH oxidase inhibitors significantly reduced the fluorescence and chemiluminescente signals. In addition, endothelial cells exposed to NO or LPS generated exosomes underwent apoptotic death, while control exosomes had no effects on apoptosis. NADPH oxidase as well as NOS inhibition significantly reduced...


Sujets)
Humains , Mâle , Femelle , Apoptose , Plaquettes , Endothélium vasculaire , Espèces réactives de l'oxygène , Lipopolysaccharides , Monoxyde d'azote , Oxydoréduction , Espèces réactives de l'azote , Sepsie
SÉLECTION CITATIONS
Détails de la recherche