RÉSUMÉ
@#This study investigated the anti-angiogenic activities of two diarylheptanoids, together with a structure analogue, curcumin. The activity and toxicity of these three compounds were compared using transgenic zebrafish as in vivo model and human umbilical vein endothelial cell(HUVEC)as in vitro model. Anti-angiogenic index(AI)was used as the ratio between LC50 and EC50. The results suggested that in both in vitro and in vivo assay, curcumin exerted the most potent anti-angiogenic effect but with lowest toxicity among these compounds; Yakuchinone A was the second potent; Yakuchinone B has the lowest activity but with the highest toxicity in all three compounds. Taken together, curcumin was the best angiogenic inhibitor in these three diarylheptanoids.
RÉSUMÉ
The aim of the present study was to identify a new candidate anti-inflammatory compound for use in the active stage of thyroid-associated ophthalmopathy (TAO). Benzylideneacetophenone compound JC3 [(2E)-3-(4-hydroxy-3-methoxyphenyl)phenylpro-2-en-l-one] was synthesized based on a structural modification of yakuchinone B, a constituent of the seeds of Alpinia oxyphylla, which belongs to the ginger family (Zingiberaceae), has been widely used in folk medicine as an anti-inflammatory phytochemical. Orbital fibroblasts were primarily cultured from patients with TAO, and the potential of JC3 to suppress the interferon (IFN)-gamma-induced protein (IP)-10/CXCL10 production in these cells was determined. IFN-gamma strongly increased the level of IP-10/CXCL10 in orbital fibroblasts from patients with TAO. JC3 exerted a significant inhibitory effect on the IFN-gamma-induced increase in IP-10/CXCL10 in a dose-dependent manner; its potency was greater than that of an identical concentration of yakuchinone B with no toxicity to cells at the concentration range used. Moreover, the constructed dimer and trimer polystructures of JC3, showed greater potency than JC3 in suppressing the IFN-gamma-induced production of IP-10/CXCL10. JC3 significantly attenuated the IP-10/CXCL10 mRNA expression induced by IFN-gamma, and a gel-shift assay showed that JC3 suppressed IFN-gamma-induced DNA binding of signal transducer and activator of transcription-1 (STAT-1) in TAO orbital fibroblasts. Our results provide initial evidence that the JC3 compound reduces the levels of IP-10/CXCL10 protein and mRNA induced by IFN-gamma in orbital fibroblasts of TAO patients. Therefore, JC3 might be considered as a future candidate for therapeutic application in TAO that exerts its effects by modulating the pathogenic mechanisms in orbital fibroblasts.