Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 517
Filtre
1.
Rev. méd. Chile ; 151(1): 81-100, feb. 2023. ilus, tab
Article Dans Espagnol | LILACS | ID: biblio-1515424

Résumé

Intermittent fasting (IF) has gained increasing scientific and general attention. Most studied forms of IF include alternate-day fasting, modified alternate-day fasting, and time-restricted eating (TRE). Several cardiometabolic effects of IF have been described in animal models and, to a lesser extent, in humans. This review analyzes the impact of IF on weight loss, glucose metabolism, blood pressure, and lipid profile in humans. A literature search was conducted in the Pubmed/Medline, Scopus, and Google Scholar databases. Controlled observational or interventional studies in humans, published between January 2000 and June 2021, were included. Studies comparing IF versus religious fasting were not included. Most studies indicate that the different types of IF have significant benefits on body composition, inducing weight loss and reducing fat mass. Changes in cardiometabolic parameters show more divergent results. In general, a decrease in fasting glucose and insulin levels is observed, together with an improved lipid profile associated with cardiovascular risk. High heterogeneity in study designs was observed, particularly in studies with TRE, small sample sizes, and short-term interventions. Current evidence shows that IF confers a range of cardiometabolic benefits in humans. Weight loss, improvement of glucose homeostasis and lipid profile, are observed in the three types of IF protocols evaluated.


Sujets)
Humains , Animaux , Maladies cardiovasculaires/prévention et contrôle , Jeûne intermittent , Perte de poids , Jeûne/physiologie , Glucose/métabolisme , Lipides
2.
Acta Physiologica Sinica ; (6): 767-778, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1007789

Résumé

As a member of the apolipoprotein C (ApoC) family with a relatively high content, ApoC3 plays a major role in the regulation of triglyceride metabolism, and plays an important role in the occurrence and development of cardiovascular diseases, glucose and lipid metabolism disorders. Nonalcoholic fatty liver disease (NAFLD) refers to the accumulation of a large amount of fat in the liver in the absence of a history of chronic alcohol consumption or other damage to the liver. A large number of previous studies have shown that there is a correlation between the gene polymorphism and high expression of ApoC3 and NAFLD. In the context of hypertriglyceridemia (HTG), this article reviews the relationship between ApoC3 and NAFLD, glucose and lipid metabolism, and islet β cell function, showing that ApoC3 can not only inhibit lipoprotein lipase (LPL) and hepatic lipase (HL) activity, delay the decomposition of triglyceride in plasma to maintain the body's energy metabolism during fasting, but also be significantly increased under insulin resistance, prompting the liver to secrete a large amount of very low-density lipoprotein (VLDL) to induce HTG. Therefore, targeting and inhibiting ApoC3 might become a new approach to treat HTG. Increasing evidence suggests that ApoC3 does not appear to be an independent "contributor" to NAFLD. Similarly, our previous studies have shown that ApoC3 is not an independent factor triggering islet β cell dysfunction in ApoC3 transgenic mice, but in a state of excess nutrition, HTG triggered by ApoC3 high expression may exacerbate the effects of hyperglycemia and insulin resistance on islet β cell function, and the underlying mechanism remains to be further discussed.


Sujets)
Humains , Animaux , Apolipoprotéine C-III/génétique , Stéatose hépatique non alcoolique/anatomopathologie , Glucose/métabolisme , Métabolisme lipidique , Hypertriglycéridémie/métabolisme , Ilots pancréatiques/métabolisme
3.
Journal of Zhejiang University. Science. B ; (12): 78-88, 2023.
Article Dans Anglais | WPRIM | ID: wpr-971470

Résumé

Melatonin receptor 1B (MT2, encoded by the MTNR1B gene), a high-affinity receptor for melatonin, is associated with glucose homeostasis including glucose uptake and transport. The rs10830963 variant in the MTNR1B gene is linked to glucose metabolism disorders including gestational diabetes mellitus (GDM); however, the relationship between MT2-mediated melatonin signaling and a high birth weight of GDM infants from maternal glucose abnormality remains poorly understood. This article aims to investigate the relationship between rs10830963 variants and GDM development, as well as the effects of MT2 receptor on glucose uptake and transport in trophoblasts. TaqMan-MGB (minor groove binder) probe quantitative real-time polymerase chain reaction (qPCR) assays were used for rs10930963 genotyping. MT2 expression in the placenta of GDM and normal pregnant women was detected by immunofluorescence, western blot, and qPCR. The relationship between MT2 and glucose transporters (GLUTs) or peroxisome proliferator-activated receptor γ (PPARγ) was established by western blot, and glucose consumption of trophoblasts was measured by a glucose assay kit. The results showed that the genotype and allele frequencies of rs10830963 were significantly different between GDM and normal pregnant women (P<0.05). The fasting, 1-h and 2-h plasma glucose levels of G-allele carriers were significantly higher than those of C-allele carriers (P<0.05). Besides, the protein and messenger RNA (mRNA) expression of MT2 in the placenta of GDM was significantly higher than that of normal pregnant women (P<0.05). Melatonin could stimulate glucose uptake and GLUT4 and PPARγ protein expression in trophoblasts, which could be attenuated by MT2 receptor knockdown. In conclusion, the rs10830963 variant was associated with an increased risk of GDM. The MT2 receptor is essential for melatonin to raise glucose uptake and transport, which may be mediated by PPARγ.


Sujets)
Femelle , Humains , Grossesse , Glycémie/métabolisme , Diabète gestationnel/métabolisme , Glucose/métabolisme , Mélatonine/métabolisme , Polymorphisme génétique , Récepteur PPAR gamma , Récepteur de la mélatonine de type MT2/génétique
4.
China Journal of Chinese Materia Medica ; (24): 2530-2537, 2023.
Article Dans Chinois | WPRIM | ID: wpr-981329

Résumé

This study aimed to observe the effect of terpinen-4-ol(T4O) on the proliferation of vascular smooth muscle cells(VSMCs) exposed to high glucose(HG) and reveal the mechanism via the Krüppel-like factor 4(KLF4)/nuclear factor kappaB(NF-κB) signaling pathway. The VSMCs were first incubated with T4O for 2 h and then cultured with HG for 48 h to establish the model of inflammatory injury. The proliferation, cell cycle, and migration rate of VSMCs were examined by MTT method, flow cytometry, and wound healing assay, respectively. The content of inflammatory cytokines including interleukin(IL)-6 and tumor necrosis factor-alpha(TNF-α) in the supernatant of VSMCs was measured by enzyme-linked immunosorbent assay(ELISA). Western blot was employed to determine the protein levels of proliferating cell nuclear antigen(PCNA), Cyclin D1, KLF4, NF-κB p-p65/NF-κB p65, IL-1β, and IL-18. The KLF4 expression in VSMCs was silenced by the siRNA technology, and then the effects of T4O on the cell cycle and protein expression of the HG-induced VSMCs were observed. The results showed that different doses of T4O inhibited the HG-induced proliferation and migration of VSMCs, increased the percentage of cells in G_1 phase, and decreased the percentage of cells in S phase, and down-regulated the protein levels of PCNA and Cyclin D1. In addition, T4O reduced the HG-induced secretion and release of the inflammatory cytokines IL-6 and TNF-α and down-regulated the expression of KLF4, NF-κB p-p65/NF-κB p65, IL-1β, and IL-18. Compared with si-NC+HG, siKLF4+HG increased the percentage of cells in G_1 phase, decreased the percentage of cells in S phase, down-regulated the expression of PCNA, Cyclin D1, and KLF4, and inhibited the activation of NF-κB signaling pathway. Notably, the combination of silencing KLF4 with T4O treatment further promoted the changes in the above indicators. The results indicate that T4O may inhibit the HG-induced proliferation and migration of VSMCs by down-regulating the level of KLF4 and inhibiting the activation of NF-κB signaling pathway.


Sujets)
Facteur de transcription NF-kappa B/métabolisme , Interleukine-18/métabolisme , Antigène nucléaire de prolifération cellulaire/génétique , Cycline D1/métabolisme , Facteur de nécrose tumorale alpha/métabolisme , Muscles lisses vasculaires , Prolifération cellulaire , Transduction du signal , Cytokines/métabolisme , Glucose/métabolisme
5.
Chinese Acupuncture & Moxibustion ; (12): 1425-1430, 2023.
Article Dans Anglais | WPRIM | ID: wpr-1007504

Résumé

OBJECTIVES@#To observe the effects on the glucose-lipid metabolism and the expression of zinc-α2-glycoprotein (ZAG) and glucose transporter 4 (GLUT4) in the femoral quadriceps and adipose tissue after electroacupuncture (EA) at "Pishu" (BL 20), "Weiwanxiashu" (EX-B 3), "Zusanli" (ST 36) and "Sanyinjiao" (SP 6) in the rats with diabetes mellitus type 2 (T2DM), so as to explore the effect mechanism of EA in treatment of T2DM.@*METHODS@#Twelve ZDF male rats were fed with high-sugar and high-fat fodder, Purina #5008 for 4 weeks to induce T2DM model. After successfully modeled, the rats were randomly divided into a model group and an EA group, with 6 rats in each one. Additionally, 6 ZL male rats of the same months age were collected as the blank group. The rats in the EA group were treated with EA at bilateral "Pishu" (BL 20), "Weiwanxiashu" (EX-B 3), "Zusanli" (ST 36) and "Sanyinjiao" (SP 6), with continuous wave, 15 Hz in frequency, and 2 mA in intensity. The electric stimulation lasted 20 min each time. EA was delivered once daily, 6 times a week for 4 weeks. Separately, the levels of fasting blood glucose (FBG) was measured before modeling, before and after intervention, and the body mass of each rat was weighted before and after intervention. After intervention, the levels of the total cholesterol (TC), triacylglycerol (TG) and free fatty acid (FFA) in serum were detected using enzyme colorimetric method; and the levels of the serum insulin (INS) and ZAG were detected by ELISA. Besides, the insulin sensitivity index (HOMA-ISI) was calculated. With Western blot technique adopted, the protein expressions of ZAG and GLUT4 in the femoral quadriceps and adipose tissue were determined.@*RESULTS@#After intervention, compared with the blank group, the levels of FBG and body mass, and the levels of serum TC, TG, FFA and INS increased (P<0.01), while HOMA-ISI decreased (P<0.01); the level of ZAG in the serum and the protein expressions of ZAG and GLUT4 in the femoral quadriceps and adipose tissue dropped (P<0.01) in the model group. In the EA group, compared with the model group, the levels of FBG and body mass, and the levels of serum TC, TG, FFA and INS were reduced (P<0.01), and HOMA-ISI increased (P<0.01); the level of ZAG in the serum and the protein expressions of ZAG and GLUT4 in the femoral quadriceps and adipose tissue increased (P<0.01, P<0.05).@*CONCLUSIONS@#Electroacupuncture can effectively regulate glucose-lipid metabolism, improve insulin resistance and sensitivity in the rats with T2DM, which is associated with the modulation of ZAG and GLUT4 expression in the skeletal muscle and adipose tissue.


Sujets)
Rats , Mâle , Animaux , Glucose/métabolisme , Électroacupuncture , Rat Sprague-Dawley , Diabète de type 2/thérapie , Métabolisme lipidique , Triglycéride , Tissu adipeux/métabolisme , Points d'acupuncture
6.
China Journal of Chinese Materia Medica ; (24): 6154-6163, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008814

Résumé

This study aims to investigate the mechanism of muscone in inhibiting the opening of mitochondrial permeability transition pore(mPTP) to alleviate the oxygen and glucose deprivation/reoxygenation(OGD/R)-induced injury of mouse hippocampal neurons(HT22). An in vitro model of HT22 cells injured by OGD/R was established. CCK-8 assay was employed to examine the viability of HT22 cells, fluorescence microscopy to measure the mitochondrial membrane potential, the content of reactive oxygen species(ROS), and the opening of mPTP in HT22 cells. Enzyme-linked immunosorbent assay was employed to determine the level of ATP and the content of cytochrome C(Cyt C) in mitochondria of HT22 cells. Flow cytometry was employed to determine the Ca~(2+) content and apoptosis of HT22 cells. The expression of Bcl-2(B-cell lymphoma-2) and Bcl-2-associated X protein(Bax) was measured by Western blot. Molecular docking and Western blot were employed to examine the binding between muscone and methyl ethyl ketone(MEK) after pronase hydrolysis of HT22 cell proteins. After the HT22 cells were treated with U0126, an inhibitor of MEK, the expression levels of MEK, p-ERK, and CypD were measured by Western blot. The results showed that compared with the OGD/R model group, muscone significantly increased the viability, mitochondrial ATP activity, and mitochondrial membrane potential, lowered the levels of ROS, Cyt C, and Ca~(2+), and reduced mPTP opening to inhibit the apoptosis of HT22 cells. In addition, muscone up-regulated the expression of MEK, p-ERK, and down-regulated that of CypD. Molecular docking showed strong binding activity between muscone and MEK. In conclusion, muscone inhibits the opening of mPTP to inhibit apoptosis, thus exerting a protective effect on OGD/R-injured HT22 cells, which is associated with the activation of MEK/ERK/CypD signaling pathway.


Sujets)
Souris , Animaux , Espèces réactives de l'oxygène/métabolisme , Simulation de docking moléculaire , Apoptose , Oxygène , Adénosine triphosphate/pharmacologie , Mitogen-Activated Protein Kinase Kinases/pharmacologie , Glucose/métabolisme
7.
Chinese Journal of Biotechnology ; (12): 4927-4938, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008069

Résumé

In order to investigate the enzyme production mechanism of yak rumen-derived anaerobic fungus Orpinomyces sp. YF3 under the induction of different carbon sources, anaerobic culture tubes were used for in vitro fermentation. 8 g/L of glucose (Glu), filter paper (Flp) and avicel (Avi) were respectively added to 10 mL of basic culture medium as the sole carbon source. The activity of fiber-degrading enzyme and the concentration of volatile fatty acid in the fermentation liquid were detected, and the enzyme producing mechanism of Orpinomyces sp. YF3 was explored by transcriptomics. It was found that, in glucose-induced fermentation solution, the activities of carboxymethyl cellulase, microcrystalline cellulase, filter paper enzyme, xylanase and the proportion of acetate were significantly increased (P < 0.05), the proportion of propionate, butyrate, isobutyrate were significantly decreased (P < 0.05). The results of transcriptome analysis showed that there were 5 949 differentially expressed genes (DEGs) between the Glu group and the Flp group, 10 970 DEGs between the Glu group and the Avi group, and 6 057 DEGs between the Flp group and the Avi group. It was found that the DEGs associated with fiber degrading enzymes were significantly up-regulated in the Glu group. Gene ontology (GO) function enrichment analysis identified that DEGs were mainly associated with the xylan catabolic process, hemicellulose metabolic process, β-glucan metabolic process, cellulase activity, endo-1,4-β-xylanase activity, cell wall polysaccharide metabolic process, carbohydrate catabolic process, glucan catabolic process and carbohydrate metabolic process. Moreover, the differentially expressed pathways associated with fiber degrading enzymes enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were mainly starch and sucrose metabolic pathways and other glycan degradation pathways. In conclusion, Orpinomyces sp. YF3 with glucose as carbon source substrate significantly increased the activity of cellulose degrading enzyme and the proportion of acetate, decreased the proportion of propionate, butyrate and isobutyrate. Furthermore, the degradation ability and energy utilization efficiency of fungus in the presence of glucose were improved by means of regulating the expression of cellulose degrading enzyme gene and participating in starch and sucrose metabolism pathway, and other glycan degradation pathways, which provides a theoretical basis for the application of Orpinomyces sp. YF3 in practical production and facilitates the application of Orpinomyces sp. YF3 in the future.


Sujets)
Animaux , Bovins , Neocallimastigales/métabolisme , Anaérobiose , Rumen/microbiologie , Propionates/métabolisme , Isobutyrates/métabolisme , Cellulose/métabolisme , Champignons , Amidon/métabolisme , Glucose/métabolisme , Acétates , Saccharose/métabolisme , Cellulases , Cellulase
8.
Chinese Journal of Biotechnology ; (12): 3863-3875, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1007999

Résumé

Reducing lactate accumulation has always been a goal of the mammalian cell biotechnology industry. When animal cells are cultured in vitro, the accumulation of lactate is mainly the combined result of two metabolic pathways. On one hand, glucose generates lactate under the function of lactate dehydrogenase A (LDHA); on the other hand, lactate can be oxidized to pyruvate by LDHB or LDHC and re-enter the TCA cycle. This study comprehensively evaluated the effects of LDH manipulation on the growth, metabolism and human adenovirus (HAdV) production of human embryonic kidney 293 (HEK-293) cells, providing a theoretical basis for engineering the lactate metabolism in mammalian cells. By knocking out ldha gene and overexpression of ldhb and ldhc genes, the metabolic efficiency of HEK-293 cells was effectively improved, and HAdV production was significantly increased. Compared with the control cell, LDH manipulation promoted cell growth, reduced the accumulation of lactate and ammonia, significantly enhanced the efficiency of substrate and energy metabolism of cells, and significantly increased the HAdV production capacity of HEK-293 cells. Among these LDH manipulation measures, ldhc gene overexpression performed the best, with the maximum cell density increased by about 38.7%. The yield of lactate to glucose and ammonia to glutamine decreased by 33.8% and 63.3%, respectively; and HAdV titer increased by at least 16 times. In addition, the ATP production rate, ATP/O2 ratio, ATP/ADP ratio and NADH content of the modified cell lines were increased to varying degrees, and the energy metabolic efficiency was significantly improved.


Sujets)
Animaux , Humains , L-Lactate dehydrogenase/génétique , Acide lactique , Adénovirus humains , Ammoniac , Cellules HEK293 , Glucose/métabolisme , Adénosine triphosphate/métabolisme , Rein/métabolisme , Mammifères/métabolisme
9.
Chinese Journal of Biotechnology ; (12): 3747-3756, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1007990

Résumé

To develop a novel glucose-lowering biomedicine with potential benefits in the treatment of type 2 diabetes, we used the 10rolGLP-1 gene previously constructed in our laboratory and the CRISPR/Cas9 genome editing technique to create an engineered Saccharomyces cerevisiae strain. The gRNA expression vector pYES2-gRNA, the donor vector pNK1-L-PGK-10rolGLP-1-R and the Cas9 expression vector pGADT7-Cas9 were constructed and co-transformed into S. cerevisiae INVSc1 strain, with the PGK-10rolGLP-1 expressing unit specifically knocked in through homologous recombination. Finally, an S. cerevisiae strain highly expressing the 10rolGLP-1 with glucose-lowering activity was obtained. SDS-PAGE and Western blotting results confirmed that two recombinant strains of S. cerevisiae stably expressed the 10rolGLP-1 and exhibited the desired glucose-lowering property when orally administered to mice. Hypoglycemic experiment results showed that the recombinant hypoglycemic S. cerevisiae strain offered a highly hypoglycemic effect on the diabetic mouse model, and the blood glucose decline was adagio, which can avoid the dangerous consequences caused by rapid decline in blood glucose. Moreover, the body weight and other symptoms such as polyuria also improved significantly, indicating that the orally hypoglycemic S. cerevisiae strain that we constructed may develop into an effective, safe, economic, practical and ideal functional food for type 2 diabetes mellitus treatment.


Sujets)
Souris , Animaux , Saccharomyces cerevisiae/métabolisme , Systèmes CRISPR-Cas , Glucose/métabolisme , Glycémie/métabolisme , Diabète de type 2/thérapie , Hypoglycémiants/métabolisme
10.
Chinese journal of integrative medicine ; (12): 801-808, 2023.
Article Dans Anglais | WPRIM | ID: wpr-1010274

Résumé

OBJECTIVE@#To investigate the effect of emodin on high glucose (HG)-induced podocyte apoptosis and whether the potential anti-apoptotic mechanism of emodin is related to induction of adenosine-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)-mediated autophagy in podocytes (MPC5 cells) in vitro.@*METHODS@#MPC5 cells were treated with different concentrations of HG (2.5, 5, 10, 20, 40, 80 and 160 mmol/L), emodin (2, 4, 8 µ mol/L), or HG (40 mmol/L) and emodin (4 µ mol/L) with or without rapamycin (Rap, 100 nmol/L) and compound C (10 µ mol/L). The viability and apoptosis of MPC5 cells were detected using cell counting kit-8 (CCK-8) assay and flow cytometry analysis, respectively. The expression levels of cleaved caspase-3, autophagy marker light chain 3 (LC3) I/II, and AMPK/mTOR signaling pathway-related proteins were determined by Western blot. The changes of morphology and RFP-LC3 fluorescence were observed under microscopy.@*RESULTS@#HG at 20, 40, 80 and 160 mmol/L dose-dependently induced cell apoptosis in MPC5 cells, whereas emodin (4 µ mol/L) significantly ameliorated HG-induced cell apoptosis and caspase-3 cleavage (P<0.01). Emodin (4 µ mol/L) significantly increased LC3-II protein expression levels and induced RFP-LC3-containing punctate structures in MPC5 cells (P<0.01). Furthermore, the protective effects of emodin were mimicked by rapamycin (100 nmol/L). Moreover, emodin increased the phosphorylation of AMPK and suppressed the phosphorylation of mTOR. The AMPK inhibitor compound C (10 µ mol/L) reversed emodin-induced autophagy activation.@*CONCLUSION@#Emodin ameliorated HG-induced apoptosis of MPC5 cells in vitro that involved induction of autophagy through the AMPK/mTOR signaling pathway, which might provide a potential therapeutic option for diabetic nephropathy.


Sujets)
Émodine/pharmacologie , AMP-Activated Protein Kinases/métabolisme , Podocytes , Caspase-3/métabolisme , Sérine-thréonine kinases TOR/métabolisme , Transduction du signal , Apoptose , Sirolimus/pharmacologie , Glucose/métabolisme , Autophagie
11.
Chinese Critical Care Medicine ; (12): 633-637, 2023.
Article Dans Chinois | WPRIM | ID: wpr-982645

Résumé

OBJECTIVE@#To investigate whether hydrogen-rich water exerts a protective effect against cellular injury by affecting the level of autophagy after oxygen glucose deprivation/reoxygenation (OGD/R) in a mouse hippocampal neuronal cell line (HT22 cells).@*METHODS@#HT22 cells in logarithmic growth phase were cultured in vitro. Cell viability was detected by cell counting kit-8 (CCK-8) assay to find the optimal concentration of Na2S2O4. HT22 cells were divided into control group (NC group), OGD/R group (sugar-free medium+10 mmol/L Na2S2O4 treated for 90 minutes and then changed to normal medium for 4 hours) and hydrogen-rich water treatment group (HW group, sugar-free medium+10 mmol/L Na2S2O4 treated for 90 minutes and then changed to medium containing hydrogen-rich water for 4 hours). The morphology of HT22 cells was observed by inverted microscopy; cell activity was detected by CCK-8 method; cell ultrastructure was observed by transmission electron microscopy; the expression of microtubule-associated protein 1 light chain 3 (LC3) and Beclin-1 was detected by immunofluorescence; the protein expression of LC3II/I and Beclin-1, markers of cellular autophagy, was detected by Western blotting.@*RESULTS@#Inverted microscopy showed that compared with the NC group, the OGD/R group had poor cell status, swollen cytosol, visible cell lysis fragments and significantly lower cell activity [(49.1±2.7)% vs. (100.0±9.7)%, P < 0.01]; compared with the OGD/R group, the HW group had improved cell status and remarkably higher cell activity [(63.3±1.8)% vs. (49.1±2.7)%, P < 0.01]. Transmission electron microscopy showed that the neuronal nuclear membrane of cells in the OGD/R group was lysed and a higher number of autophagic lysosomes were visible compared with the NC group; compared with the OGD/R group, the neuronal damage of cells in the HW group was reduced and the number of autophagic lysosomes was notably decreased. The results of immunofluorescence assay showed that the expressions of LC3 and Beclin-1 were outstandingly enhanced in the OGD/R group compared with the NC group, and the expressions of LC3 and Beclin-1 were markedly weakened in the HW group compared with the OGD/R group. Western blotting assay showed that the expressions were prominently higher in both LC3II/I and Beclin-1 in the OGD/R group compared with the NC group (LC3II/I: 1.44±0.05 vs. 0.37±0.03, Beclin-1/β-actin: 1.00±0.02 vs. 0.64±0.01, both P < 0.01); compared with the OGD/R group, the protein expression of both LC3II/I and Beclin-1 in the HW group cells were notably lower (LC3II/I: 0.54±0.02 vs. 1.44±0.05, Beclin-1/β-actin: 0.83±0.07 vs. 1.00±0.02, both P < 0.01).@*CONCLUSIONS@#Hydrogen-rich water has a significant protective effect on OGD/R-causing HT22 cell injury, and the mechanism may be related to the inhibition of autophagy.


Sujets)
Souris , Animaux , Oxygène/métabolisme , Bécline-1/pharmacologie , Glucose/métabolisme , Actines , Sincalide , Autophagie/physiologie , Hydrogène/pharmacologie , Lésion d'ischémie-reperfusion , Apoptose
12.
Journal of Central South University(Medical Sciences) ; (12): 663-670, 2023.
Article Dans Anglais | WPRIM | ID: wpr-982335

Résumé

OBJECTIVES@#Endothelium-dependent vasodilation dysfunction is the pathological basis of diabetic macroangiopathy. The utilization and adaptation of endothelial cells to high glucose determine the functional status of endothelial cells. Glycolysis pathway is the major energy source for endothelial cells. Abnormal glycolysis plays an important role in endothelium-dependent vasodilation dysfunction induced by high glucose. Pyruvate kinase isozyme type M2 (PKM2) is one of key enzymes in glycolysis pathway, phosphorylation of PKM2 can reduce the activity of pyruvate kinase and affect the glycolysis process of glucose. TEPP-46 can stabilize PKM2 in its tetramer form, reducing its dimer formation and phosphorylation. Using TEPP-46 as a tool drug to inhibit PKM2 phosphorylation, this study aims to explore the impact and potential mechanism of phosphorylated PKM2 (p-PKM2) on endothelial dependent vasodilation function in high glucose, and to provide a theoretical basis for finding new intervention targets for diabetic macroangiopathy.@*METHODS@#The mice were divided into 3 groups: a wild-type (WT) group (a control group, C57BL/6 mice) and a db/db group (a diabetic group, db/db mice), which were treated with the sodium carboxymethyl cellulose solution (solvent) by gavage once a day, and a TEPP-46 group (a treatment group, db/db mice+TEPP-46), which was gavaged with TEPP-46 (30 mg/kg) and sodium carboxymethyl cellulose solution once a day. After 12 weeks of treatment, the levels of p-PKM2 and PKM2 protein in thoracic aortas, plasma nitric oxide (NO) level and endothelium-dependent vasodilation function of thoracic aortas were detected. High glucose (30 mmol/L) with or without TEPP-46 (10 μmol/L), mannitol incubating human umbilical vein endothelial cells (HUVECs) for 72 hours, respectively. The level of NO in supernatant, the content of NO in cells, and the levels of p-PKM2 and PKM2 protein were detected. Finally, the effect of TEPP-46 on endothelial nitric oxide synthase (eNOS) phosphorylation was detected at the cellular and animal levels.@*RESULTS@#Compared with the control group, the levels of p-PKM2 in thoracic aortas of the diabetic group increased (P<0.05). The responsiveness of thoracic aortas in the diabetic group to acetylcholine (ACh) was 47% lower than that in the control group (P<0.05), and that in TEPP-46 treatment group was 28% higher than that in the diabetic group (P<0.05), while there was no statistically significant difference in the responsiveness of thoracic aortas to sodium nitroprusside (SNP). Compared with the control group, the plasma NO level of mice decreased in the diabetic group, while compared with the diabetic group, the phosphorylation of PKM2 in thoracic aortas decreased and the plasma NO level increased in the TEPP-46 group (both P<0.05). High glucose instead of mannitol induced the increase of PKM2 phosphorylation in HUVECs and reduced the level of NO in supernatant (both P<0.05). HUVECs incubated with TEPP-46 and high glucose reversed the reduction of NO production and secretion induced by high glucose while inhibiting PKM2 phosphorylation (both P<0.05). At the cellular and animal levels, TEPP-46 reversed the decrease of eNOS (ser1177) phosphorylation induced by high glucose (both P<0.05).@*CONCLUSIONS@#p-PKM2 may be involved in the process of endothelium-dependent vasodilation dysfunction in Type 2 diabetes by inhibiting p-eNOS (ser1177)/NO pathway.


Sujets)
Animaux , Humains , Souris , Carboxyméthylcellulose de sodium/pharmacologie , Diabète de type 2/métabolisme , Endothélium vasculaire/métabolisme , Glucose/métabolisme , Cellules endothéliales de la veine ombilicale humaine , Souris de lignée C57BL , Monoxyde d'azote/métabolisme , Nitric oxide synthase type III/métabolisme , Phosphorylation , Pyruvate kinase/métabolisme , Vasodilatation
13.
Journal of Central South University(Medical Sciences) ; (12): 641-647, 2023.
Article Dans Anglais | WPRIM | ID: wpr-982333

Résumé

OBJECTIVES@#Application of ultrashort wave (USW) to rats with cerebral ischemia and reperfusion injury could inhibit the decrease of expression of secretory pathway Ca2+-ATPase 1 (SPCA1), an important participant in Golgi stress, reduce the damage of Golgi apparatus and the apoptosis of neuronal cells, thereby alleviating cerebral ischemia-reperfusion injury. This study aims to investigate the effect of USW on oxygen-glucose deprivation/reperfusion (OGD/R) injury and the expression of SPCA1 at the cellular level.@*METHODS@#N2a cells were randomly divided into a control (Con) group, an OGD/R group, and an USW group. The cells in the Con group were cultured without exposure to OGD. The cells in the OGD/R group were treated with OGD/R. The cells in the USW group were treated with USW after OGD/R. Cell morphology was observed under the inverted phase-contrast optical microscope, cell activity was detected by cell counting kit-8 (CCK-8), apoptosis was detected by flow cytometry, and SPCA1 expression was detected by Western blotting.@*RESULTS@#Most of the cells in the Con group showed spindle shape with a clear outline and good adhesion. In the OGD/R group, cells were wrinkled, with blurred outline, poor adhesion, and lots of suspended dead cells appeared; compared with the OGD/R group, the cell morphology and adherence were improved, with clearer outlines and fewer dead cells in the USW group. Compared with the Con group, the OGD/R group showed decreased cell activity, increased apoptotic rate, and down-regulating SPCA1 expression with significant differences (all P<0.001); compared with the OGD/R group, the USW group showed increased cell activity, decreased apoptotic rate, and up-regulating SPCA1 expression with significant differences (P<0.01 or P<0.001).@*CONCLUSIONS@#USW alleviates the injury of cellular OGD/R, and its protective effect may be related to its up-regulation of SPCA1 expression.


Sujets)
Animaux , Rats , Apoptose , Encéphalopathie ischémique , Glucose/métabolisme , Oxygène/métabolisme , Lésion d'ischémie-reperfusion/métabolisme , Activation de la transcription , Régulation positive , Calcium-Transporting ATPases/métabolisme
14.
China Journal of Chinese Materia Medica ; (24): 1897-1903, 2022.
Article Dans Chinois | WPRIM | ID: wpr-928186

Résumé

Mitochondrion, as the main energy-supply organelle, is the key target region that determines neuronal survival and death during ischemia. When an ischemic stroke occurs, timely removal of damaged mitochondria is very important for improving mitochondrial function and repairing nerve damage. This study investigated the effect of ligustilide(LIG), an active ingredient of Chinese medicine, on mitochondrial function and mitophagy based on the oxygen and glucose deprivation/reperfusion(OGD/R)-induced injury model in HT22 cells. By OGD/R-induced injury model was induced in vitro, HT22 cells were pre-treated with LIG for 3 h, and the cell viability was detected by the CCK-8 assay. Immunofluorescence and flow cytometry were used to detect indicators related to mitochondrial function, such as mitochondrial membrane potential, calcium overload, and reactive oxygen species(ROS). Western blot was used to detect the expression of dynamin-related protein 1(Drp1, mitochondrial fission protein) and cleaved caspase-3(apoptotic protein). Immunofluorescence was used to observe the co-localization of the translocase of outer mitochondrial membrane 20(TOMM20, mitochondrial marker) and lysosome-associated membrane protein 2(LAMP2, autophagy marker). The results showed that LIG increased the cell viability of HT22 cells as compared with the conditions in the model group. Furthermore, LIG also inhibited the ROS release, calcium overload, and the decrease in mitochondrial membrane potential in HT22 cells after OGD/R-induced injury, facilitated Drp1 expression, and promoted the co-localization of TOMM20 and LAMP2. The findings indicate that LIG can improve the mitochondrial function after OGD/R-induced injury and promote mitophagy. When mitophagy inhibitor mdivi-1 was administered, the expression of apoptotic protein increased, suggesting that the neuroprotective effect of LIG may be related to the promotion of mitophagy.


Sujets)
Humains , 4-Butyrolactone/analogues et dérivés , Apoptose , Calcium/pharmacologie , Glucose/métabolisme , Protéines mitochondriales , Mitophagie , Espèces réactives de l'oxygène/métabolisme , Lésion d'ischémie-reperfusion/génétique
15.
Acta Physiologica Sinica ; (6): 255-264, 2022.
Article Dans Chinois | WPRIM | ID: wpr-927601

Résumé

The synthesis and decomposition of glycogen adjust the blood glucose dynamically to maintain the energy supply required by the cells. As the only hormone that lowers blood sugar in the body, insulin can promote glycogen synthesis by activating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway and increasing glucose transporter translocation, and inhibit gluconeogenesis to lower blood glucose. In the endometrium, glycogen metabolism is active, but gluconeogenesis does not occur. The glycogen metabolism in the endometrium is controlled not only by the classical glucose regulating hormones, but also by the ovarian hormones. The functional activities related to implantation of the endometrium during the implantation window require glucose as energy source. A large amount of glucose is used to synthesize glycogen in the endometrium before implantation, which could meet the increased energy demand for embryo implantation. In diabetes, glycogen metabolism in the endometrium is impaired, which frequently leads to implantation failure and early abortion. This article reviews the glycogen metabolism in the endometrium and discusses its role in embryo implantation, which provide new ideas for embryo implantation research and infertility treatment.


Sujets)
Femelle , Humains , Grossesse , Glycémie/métabolisme , Implantation embryonnaire , Endomètre , Glucose/métabolisme , Glycogène/métabolisme , Insuline/métabolisme , Phosphatidylinositol 3-kinases/métabolisme
17.
Rev. Nutr. (Online) ; 35: e210266, 2022. tab, graf
Article Dans Anglais | LILACS | ID: biblio-1406922

Résumé

ABSTRACT Objective This scoping review aimed to map evidence on açai supplementation combined with exercise in animal and/or human experimental studies. Methods The search considered six electronic databases and screening of relevant references. The selection process and data extraction were performed by two independent authors. The study characteristics, and AS (e.g., form, intervention time, amount ingested) and exercise (e.g., types, intensity, and duration) strategies were summarized, as well as their reported results. Results From an initial total of 342 studies identified; 11 (5 with animal and 6 with human models) were eligible. In animals, açai supplementation and exercise led to benefits in exercise tolerance and improvements in several hemodynamic parameters, as well as significant improvements in liver markers and glucose metabolism. In humans, açai supplementation indicated positive results in increasing exhaustion time to 90% of VO2max and increasing intensity at the anaerobic threshold. Conclusion We conclude that future research involving animals and humans should examine açai supplementation and exercise with (a) obesity models to test the effect of adiponectin on body composition with analysis of histological and histochemical parameters; (b) eccentric injury protocols with the incorporation of muscle quality variables to assess recovery; (c) chronic açai supplementation and strength training; (d) comparison of different forms of açai supplementation in exercise protocols.


RESUMO Objetivo Esta revisão de escopo teve como objetivo mapear evidências sobre a suplementação com açaí combinada com exercícios físicos em estudos experimentais em animais e / ou humanos. Métodos A busca considerou seis bases de dados eletrônicas além da triagem de referências relevantes. O processo de seleção e extração de dados foi realizado por dois autores independentes. As características do estudo, estratégias de suplementação de açaí (forma, tempo de intervenção, e quantidade ingerida) e exercícios (tipos, intensidade e duração), seus resultados foram resumidos. Resultados Um total de 342 estudos foram inicialmente alcançados e somente 11 foram elegíveis (5 com animais e 6 com humanos). Em animais, a suplementação de açaí e os exercícios indicaram benefícios na tolerância ao exercício e melhorias em vários parâmetros hemodinâmicos, bem como melhorias significativas nos marcadores hepáticos e no metabolismo da glicose. Em humanos, a suplementação de açaí indicou resultados positivos no aumento do tempo de exaustão para 90% do VO2máx e no aumento da intensidade correspondente ao limiar anaeróbio. Conclusão Concluiu-se que pesquisas futuras envolvendo animais e humanos devem examinar a suplementação de açaí e exercícios com (a) modelos de obesidade para testar o efeito da adiponectina na composição corporal por meio de parâmetros histológicos e histoquímicos (b) protocolos de dano muscular excêntrico com incorporação de variáveis de qualidade muscular para avaliação da recuperação; (c) suplementação crônica de açaí e treinamento de força; (d) comparação das diferentes formas de suplementação de açaí em protocolos de exercícios.


Sujets)
Humains , Animaux , Mâle , Femelle , Adolescent , Adulte , Adulte d'âge moyen , Rats , Jeune adulte , Épreuve d'effort/méthodes , Euterpe/physiologie , Stress oxydatif , Glucose/métabolisme , Hémodynamique/physiologie , Antioxydants/physiologie
18.
Acta Physiologica Sinica ; (6): 657-664, 2021.
Article Dans Chinois | WPRIM | ID: wpr-887700

Résumé

Arachidonic acid (AA) is an ω-6 polyunsaturated fatty acid, which mainly exists in the cell membrane in the form of phospholipid. Three major enzymatic pathways including the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 monooxygenase (CYP450) pathways are involved in AA metabolism leading to the generation of a variety of lipid mediators such as prostaglandins, leukotrienes, hydroxyeicosatetraenoic acids (HETEs) and epoxyeicoastrienoic acids (EETs). These bioactive AA metabolites play an important role in the regulation of many physiological processes including the maintenance of liver glucose and lipid homeostasis. As the central metabolic organ, the liver is essential in metabolism of carbohydrates, lipids and proteins, and its dysfunction is associated with the pathogenesis of many metabolic diseases such as type 2 diabetes mellitus, dyslipidemia and nonalcoholic fatty liver disease (NAFLD). This article aims to provide an overview of the enzymatic pathways of AA and discuss the role of AA-derived lipid mediators in the regulation of hepatic glucose and lipid metabolism and their associations with the pathogenesis of major metabolic disorders.


Sujets)
Humains , Acide arachidonique/métabolisme , Diabète de type 2 , Glucose/métabolisme , Homéostasie , Métabolisme lipidique , Foie
19.
Chinese Journal of Biotechnology ; (12): 40-52, 2021.
Article Dans Chinois | WPRIM | ID: wpr-878541

Résumé

In recent years, long non-coding RNA (lncRNA) has been proved to be involved in the regulation of biological processes at various levels, attracting research interests in life science. LncRNA possesses the unique capability and exert discrete effects on transcription, translation and post-translational modification of the target genes through interacting with DNA, RNA and protein. Current studies have revealed that lncRNA plays an important role in hepatic metabolism via diverse pathways. This review focuses on the function of lncRNA and its relationship with hepatic energy metabolism and the correlated diseases, to elucidate the underlying mechanisms and prospects of lncRNA researches.


Sujets)
Glucose/métabolisme , Métabolisme lipidique/génétique , Foie/métabolisme , ARN long non codant/génétique
20.
Acta Physiologica Sinica ; (6): 805-812, 2021.
Article Dans Chinois | WPRIM | ID: wpr-921283

Résumé

This study aimed to investigate the effects and the underlying mechanism of CD36 gene on glucose and lipid metabolism disorder induced by high-fat diet in mice. Wild type (WT) mice and systemic CD36 knockout (CD36


Sujets)
Animaux , Souris , Alimentation riche en graisse/effets indésirables , Stéatose hépatique/métabolisme , Glucose/métabolisme , Insuline/métabolisme , Insulinorésistance , Métabolisme lipidique , Foie , Triglycéride
SÉLECTION CITATIONS
Détails de la recherche