Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 609
Filtre
1.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 15-30, 2024.
Article Dans Anglais | WPRIM | ID: wpr-1011008

Résumé

Oleanolic acid (OA), a pentacyclic triterpenoid, exhibits a broad spectrum of biological activities, including antitumor, antiviral, antibacterial, anti-inflammatory, hepatoprotective, hypoglycemic, and hypolipidemic effects. Since its initial isolation and identification, numerous studies have reported on the structural modifications and pharmacological activities of OA and its derivatives. Despite this, there has been a dearth of comprehensive reviews in the past two decades, leading to challenges in subsequent research on OA. Based on the main biological activities of OA, this paper comprehensively summarized the modification strategies and structure-activity relationships (SARs) of OA and its derivatives to provide valuable reference for future investigations into OA.


Sujets)
Acide oléanolique , Relation structure-activité , Anti-inflammatoires/pharmacologie , Triterpènes , Antibactériens/pharmacologie
2.
Biomedical and Environmental Sciences ; (12): 1015-1027, 2023.
Article Dans Anglais | WPRIM | ID: wpr-1007878

Résumé

OBJECTIVE@#This study aimed to compare 9 perfluoroalkyl sulfonic acids (PFSA) with carbon chain lengths (C4-C12) to inhibit human placental 3β-hydroxysteroid dehydrogenase 1 (3β-HSD1), aromatase, and rat 3β-HSD4 activities.@*METHODS@#Human and rat placental 3β-HSDs activities were determined by converting pregnenolone to progesterone and progesterone secretion in JEG-3 cells was determined using HPLC/MS-MS, and human aromatase activity was determined by radioimmunoassay.@*RESULTS@#PFSA inhibited human 3β-HSD1 structure-dependently in the order: perfluorooctanesulfonic acid (PFOS, half-maximum inhibitory concentration, IC 50: 9.03 ± 4.83 μmol/L) > perfluorodecanesulfonic acid (PFDS, 42.52 ± 8.99 μmol/L) > perfluoroheptanesulfonic acid (PFHpS, 112.6 ± 29.39 μmol/L) > perfluorobutanesulfonic acid (PFBS) = perfluoropentanesulfonic acid (PFPS) = perfluorohexanesulfonic acid (PFHxS) = perfluorododecanesulfonic acid (PFDoS) (ineffective at 100 μmol/L). 6:2FTS (1H, 1H, 2H, 2H-perfluorooctanesulfonic acid) and 8:2FTS (1H, 1H, 2H, 2H-perfluorodecanesulfonic acid) did not inhibit human 3β-HSD1. PFOS and PFHpS are mixed inhibitors, whereas PFDS is a competitive inhibitor. Moreover, 1-10 μmol/L PFOS and PFDS significantly reduced progesterone biosynthesis in JEG-3 cells. Docking analysis revealed that PFSA binds to the steroid-binding site of human 3β-HSD1 in a carbon chain length-dependent manner. All 100 μmol/L PFSA solutions did not affect rat 3β-HSD4 and human placental aromatase activity.@*CONCLUSION@#Carbon chain length determines inhibitory potency of PFSA on human placental 3β-HSD1 in a V-shaped transition at PFOS (C8), with inhibitory potency of PFOS > PFDS > PFHpS > PFBS = PFPS = PFHxS = PFDoS = 6:2FTS = 8:2FTS.


Sujets)
Humains , Grossesse , Femelle , Rats , Animaux , Placenta , Progestérone/pharmacologie , Aromatase/pharmacologie , Lignée cellulaire tumorale , Fluorocarbones , Acides alcanesulfoniques , Relation structure-activité , Hydroxysteroid dehydrogenases/pharmacologie
3.
China Journal of Chinese Materia Medica ; (24): 2667-2678, 2023.
Article Dans Chinois | WPRIM | ID: wpr-981371

Résumé

Polysaccharides have significant immunomodulatory activity and have good development value in food and medicine fields. At present, there are many studies on the chemical structure and immune activity of polysaccharides, but the relationship between them of polysaccharides has not been fully explained, which limits the further development and utilization of polysaccharide resources. The immune activity of polysaccharides is closely related to their own structure. This paper systematically summarized the relationship between the relative molecular weight, monosaccharide composition, glycosidic bond types, chemical modification, and advanced conformation of polysaccharides and the immune regulation, aiming to provide references for the profound study of polysaccharide structure-activity relationship and utilization of polysaccharides.


Sujets)
Oses/composition chimique , Relation structure-activité , Masse moléculaire , Antioxydants/pharmacologie , Polyosides/composition chimique
4.
China Journal of Chinese Materia Medica ; (24): 2387-2395, 2023.
Article Dans Chinois | WPRIM | ID: wpr-981315

Résumé

As a traditional Chinese herb and functional food, the fruits of Lycium barbarum has been widely used for thousands of years in China. L. barbarum polysaccharides(LBPs) are predominant active components, which have immunomodulatory, antioxidant, hypoglycemic, neuroprotective, anti-tumor, and prebiotic activities. The molecular weight, monosaccharide composition, glycosidic bond, branching degree, protein content, chemical modification, and spatial structure of LBPs are closely related to their biological activity. Based on the previous studies of this research team, this paper systematically combed and integrated the research progress of structure, function, and structure-activity relationship of LBPs. At the same time, some problems restricting the clarification of the structure-activity relationship of LBPs were considered and prospected, hoping to provide references for the high value utilization of LBPs and in-depth exploration of their health value.


Sujets)
Lycium/composition chimique , Médicaments issus de plantes chinoises/composition chimique , Relation structure-activité , Antioxydants/pharmacologie , Antinéoplasiques , Polyosides/composition chimique
5.
China Journal of Chinese Materia Medica ; (24): 5410-5418, 2023.
Article Dans Chinois | WPRIM | ID: wpr-1008739

Résumé

Aconiti Lateralis Radix Praeparata polysaccharides(AP) are a class of bioactive macromolecules extracted from the herbs of Aconiti Lateralis Radix Praeparata and its various processed products. Since the AP was first separated in 1986, its pharmacological effects include immune regulation, anti-tumor, anti-depression, organ protection, hypoglycemia, and anti-inflammatory had been found. In recent years, with the development of polysaccharide extraction, separation, and structure identification technologies, more than 20 kinds of AP have been separated from Aconiti Lateralis Radix Praeparata and its processed products, and they have ob-vious differences in relative molecular weight, monosaccharide composition, glycosidic bond, structural characteristics, and biological activities. In particular, AP may be dissolved, degraded, or allosteric under the complex processing environment of fermentation, soaking, cooking, etc., leading to the diversified structure of AP, which provides a possibility for further understanding of the structure-activity relationship of AP. Therefore, this study systematically reviewed the research progress on the structure and structure-activity relationship of AP, summarized the biological activity and potential action mechanism of AP, and discussed the technical challenges in the development and application of AP, so as to promote the quality control and further development and utilization of AP.


Sujets)
Médicaments issus de plantes chinoises/composition chimique , Aconitum/composition chimique , Polyosides/pharmacologie , Relation structure-activité , Technologie
6.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 81-101, 2022.
Article Dans Anglais | WPRIM | ID: wpr-929247

Résumé

The spread of antibiotic-resistant bacteria and exhausted drug leads render some infections untreatable now and in the future. To deal with these "new challenges", scientists tend to re-pick up "old antibiotics". Fusidane-type antibiotics have been known for nearly 80 years as potent antibacterial agents against gram-positive bacteria, especially Staphylococci, and represent the only triterpene-derived antibiotic class in clinical setting. These attractive characteristics have drawn renewed attention on fusidane-type antibiotics in recent decades. Isolation, characterization, biological evaluation, as well as chemical modifications of fusidane-type antibiotics are increasingly being reported. Combinatorial biosynthesis of this type of antibiotics has been successfully utilized not only for elucidating the biosynthetic pathways, but also for expanding their structural diversity. Some isolated and synthetic compounds exhibit comparable or even more potent biological activity than fusidic acid. This review provides an overview of progress on the studies of structure and biology of fusidane-type antibiotics from 1943 to April 2021. The informative structure-activity relationship is also highlighted.


Sujets)
Antibactériens/pharmacologie , Bactéries , Biologie , Relation structure-activité
7.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 74-80, 2022.
Article Dans Anglais | WPRIM | ID: wpr-929238

Résumé

Diversity-oriented synthesis is aimed to increase the chemical diversity of target natural products for extensive biological activity evaluation. Indole ring is an important functional group in a large number of drugs and other biologically active agents, and indole-containing natural products have been frequently isolated from marine sources in recent years. In this paper, a series of indole-containing marine natural hyrtioreticulin derivatives, including 19 new ones, were designed, synthesized through a key Pictet-Spengler reaction, and evaluated for their inflammation related activity. Compound 13b displayed the most promising activity by inhibiting TNF-α cytokine release with an inhibitory rate of 92% at a concentration of 20 μmol·L-1. A preliminary structure-activity relationship analysis was also discussed. This research may throw light on the discovery of marine indole alkaloid derived anti-inflammatory drug leads.


Sujets)
Animaux , Anti-inflammatoires/pharmacologie , Produits biologiques/pharmacologie , Alcaloïdes indoliques/pharmacologie , Porifera , Relation structure-activité
8.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 401-420, 2022.
Article Dans Anglais | WPRIM | ID: wpr-939907

Résumé

Bacterial surface glycans perform a diverse and important set of biological roles, and have been widely used in the treatment of bacterial infectious diseases. The majority of bacterial surface glycans are decorated with diverse rare functional groups, including amido, acetamidino, carboxamido and pyruvate groups. These functional groups are thought to be important constituents for the biological activities of glycans. Chemical synthesis of glycans bearing these functional groups or their variants is essential for the investigation of structure-activity relationships by a medicinal chemistry approach. To date, a broad choice of synthetic methods is available for targeting the different rare functional groups in bacterial surface glycans. This article reviews the structures of naturally occurring rare functional groups in bacterial surface glycans, and the chemical methods used for installation of these groups.


Sujets)
Humains , Infections bactériennes , Polyosides/composition chimique , Relation structure-activité
9.
Mem. Inst. Oswaldo Cruz ; 115: e200179, 2020. graf
Article Dans Anglais | LILACS, SES-SP | ID: biblio-1135266

Résumé

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection depends on viral polyprotein processing, catalysed by the main proteinase (Mpro). The solution of the SARS-CoV-2 Mpro structure allowed the investigation of potential inhibitors. This work aims to provide first evidences of the applicability of commercially approved drugs to treat coronavirus disease-19 (COVID-19). We screened 4,334 compounds to found potential inhibitors of SARS-CoV-2 replication using an in silico approach. Our results evidenced the potential use of coagulation modifiers in COVID-19 treatment due to the structural similarity of SARS-CoV-2 Mpro and human coagulation factors thrombin and Factor Xa. Further in vitro and in vivo analysis are needed to corroborate these results.


Sujets)
Humains , Inhibiteurs de protéases/composition chimique , Protéines virales non structurales/antagonistes et inhibiteurs , Betacoronavirus , Relation structure-activité , Simulation numérique , Cysteine endopeptidases , Infections à coronavirus/traitement médicamenteux , Protéases 3C des coronavirus , SARS-CoV-2 , COVID-19/traitement médicamenteux
10.
China Journal of Chinese Materia Medica ; (24): 3128-3135, 2020.
Article Dans Chinois | WPRIM | ID: wpr-828006

Résumé

Inhibition of bitterness is a significant measure to improve the compliance and clinical efficacy of traditional Chinese medicine(TCM) decoction. According to the characteristics of TCM decoction, such as high dispersion of bitterness components, multi-component bitterness superposition and strong instantaneous stimulation, the research group put forward a new strategy to inhibit bitterness in the early stage based on the self-assembly characteristics of amphiphilic substances in aqueous solution, in order to reduce the distribution of bitterness components in real solution and achieve the purpose of bitter-masking. It was found that the bitter-masking effect of amphiphilic substances was different on the bitter compounds of various structures. Therefore, it was speculated that there might be a certain relationship between the bitter inhibition effect and the substrate structure. In this paper, the interaction between mPEG-PLLA and five bitter alkaloids(bamatine, jatrorrhizine, berberine, epiberberine and coptisine) in Coptidis Rhizoma was studied to explore the effect of substrate structure on the inhibition of bitterness. The sensory test of volunteers was used to determine the bitter-masking effect of mPEG-PLLA on the decoction of Coptidis Rhizoma and its main bitter alkaloids. The molecular docking and molecular force field were applied to locate the bitter groups and the bitter-masking parts. The relationship between the bitter strength and the structure was analyzed by the surface electrostatic potential of the bitter alkaloids, and the correlation between the bitter-masking effect and the structural parameters of the bitter components was explored by factor analysis, so as to clarify the structure-activity relationship of mPEG-PLLA in masking the bitterness of coptis alkaloids. It was found that mPEG-PLLA had significant taste masking effect on the decoction of Coptidis Rhizoma and five alkaloids. The masking effect was obviously related to the structure of different alkaloids: the effect increased with the increase of the number of hydrogen donors, rotatable bonds, molecular weight, and hydrophobicity, and decreased with the increase of surface electrostatic potential, electrophilicity and binding energy with bitter receptors. In this study, the influence of alkaloid structure of Coptidis Rhizoma on the butter-masking effect of mPEG-PLLA was preliminarily elucidated, providing a scientific basis for better exerting the bitter-masking effect of amphiphilic block copolymers.


Sujets)
Humains , Alcaloïdes , Coptis , Médicaments issus de plantes chinoises , Simulation de docking moléculaire , Relation structure-activité , Goût
11.
Protein & Cell ; (12): 723-739, 2020.
Article Dans Anglais | WPRIM | ID: wpr-828747

Résumé

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Sujets)
Animaux , Humains , Souris , Antiviraux , Pharmacologie , Utilisations thérapeutiques , Betacoronavirus , Physiologie , Sites de fixation , Lignée cellulaire , Infections à coronavirus , Traitement médicamenteux , Virologie , Crotonates , Pharmacologie , Syndrome de libération de cytokines , Traitement médicamenteux , Évaluation préclinique de médicament , Techniques de knock-out de gènes , Virus de la grippe A , Léflunomide , Pharmacologie , Souris de lignée BALB C , Infections à Orthomyxoviridae , Traitement médicamenteux , Oséltamivir , Utilisations thérapeutiques , Oxidoreductases , Métabolisme , Pandémies , Pneumopathie virale , Traitement médicamenteux , Virologie , Liaison aux protéines , Pyrimidines , Virus à ARN , Physiologie , Relation structure-activité , Toluidines , Pharmacologie , Ubiquinones , Métabolisme , Réplication virale
12.
Protein & Cell ; (12): 723-739, 2020.
Article Dans Anglais | WPRIM | ID: wpr-828583

Résumé

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Sujets)
Animaux , Humains , Souris , Antiviraux , Pharmacologie , Utilisations thérapeutiques , Betacoronavirus , Physiologie , Sites de fixation , Lignée cellulaire , Infections à coronavirus , Traitement médicamenteux , Virologie , Crotonates , Pharmacologie , Syndrome de libération de cytokines , Traitement médicamenteux , Évaluation préclinique de médicament , Techniques de knock-out de gènes , Virus de la grippe A , Léflunomide , Pharmacologie , Souris de lignée BALB C , Infections à Orthomyxoviridae , Traitement médicamenteux , Oséltamivir , Utilisations thérapeutiques , Oxidoreductases , Métabolisme , Pandémies , Pneumopathie virale , Traitement médicamenteux , Virologie , Liaison aux protéines , Pyrimidines , Virus à ARN , Physiologie , Relation structure-activité , Toluidines , Pharmacologie , Ubiquinones , Métabolisme , Réplication virale
13.
Protein & Cell ; (12): 723-739, 2020.
Article Dans Anglais | WPRIM | ID: wpr-827018

Résumé

Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide, such as the on-going outbreak of the novel coronavirus SARS-CoV-2. Herein, we identified two potent inhibitors of human DHODH, S312 and S416, with favorable drug-likeness and pharmacokinetic profiles, which all showed broad-spectrum antiviral effects against various RNA viruses, including influenza A virus, Zika virus, Ebola virus, and particularly against SARS-CoV-2. Notably, S416 is reported to be the most potent inhibitor so far with an EC of 17 nmol/L and an SI value of 10,505.88 in infected cells. Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells. This work demonstrates that both S312/S416 and old drugs (Leflunomide/Teriflunomide) with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide, no matter such viruses are mutated or not.


Sujets)
Animaux , Humains , Souris , Antiviraux , Pharmacologie , Utilisations thérapeutiques , Betacoronavirus , Physiologie , Sites de fixation , Lignée cellulaire , Infections à coronavirus , Traitement médicamenteux , Virologie , Crotonates , Pharmacologie , Syndrome de libération de cytokines , Traitement médicamenteux , Évaluation préclinique de médicament , Techniques de knock-out de gènes , Virus de la grippe A , Léflunomide , Pharmacologie , Souris de lignée BALB C , Infections à Orthomyxoviridae , Traitement médicamenteux , Oséltamivir , Utilisations thérapeutiques , Oxidoreductases , Métabolisme , Pandémies , Pneumopathie virale , Traitement médicamenteux , Virologie , Liaison aux protéines , Pyrimidines , Virus à ARN , Physiologie , Relation structure-activité , Toluidines , Pharmacologie , Ubiquinones , Métabolisme , Réplication virale
14.
Journal of Zhejiang University. Science. B ; (12): 868-876, 2019.
Article Dans Anglais | WPRIM | ID: wpr-1010494

Résumé

Acrolein, known as one of the most common reactive carbonyl species, is a toxic small molecule affecting human health in daily life. This study is focused on the scavenging abilities and mechanism of ferulic acid and some other phenolic acids against acrolein. Among the 13 phenolic compounds investigated, ferulic acid was found to have the highest efficiency in scavenging acrolein under physiological conditions. Ferulic acid remained at (3.04±1.89)% and acrolein remained at (29.51±4.44)% after being incubated with each other for 24 h. The molecular mechanism of the detoxifying process was also studied. Detoxifying products, namely 2-methoxy-4-vinylphenol (product 21) and 5-(4-hydroxy-3-methoxyphenyl)pent-4-enal (product 22), were identified though nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS), after the scavenging process. Ferulic acid showed significant activity in scavenging acrolein under physiological conditions. This study indicates a new method for inhibiting damage from acrolein.


Sujets)
Acroléine/toxicité , Acides coumariques/pharmacologie , Glutathion/physiologie , Hydroxybenzoates/pharmacologie , Spectroscopie par résonance magnétique , Relation structure-activité
15.
China Journal of Chinese Materia Medica ; (24): 4653-4660, 2019.
Article Dans Chinois | WPRIM | ID: wpr-1008242

Résumé

Isoquiritigenin,one of the active constituents in the Chinese herb liquorice,is found to have moderate inhibitory activity against rat monoamine oxidase B(MAO-B,IC5047. 2 μmol·L-1). However,the structure-activity relationship(SAR) remains unclear until now. In an attempt to reveal the SAR of inhibition by isoquiritigenin,and to identify more potent and selective inhibitors of MAOB,a series of 13 derivatives based on the scaffold of isoquiritigenin were prepared,and their purities and structures were confirmed by UPLC,1 H-NMR,13 C-NMR and HRMS. These compounds were then evaluated for their ability to inhibit the enzymatic activity of human MAO-B. The SAR of inhibition was summarized and a potent compound C8 with high inhibitory activity(IC501. 4 μmol·L-1) and selectivity(>57 folds over MAO-A) was identified. Enzyme kinetics studies suggested that C8 acted as a competitive inhibitor. In addition,C8 showed little cytotoxicity to glial cells in vitro,which could be a promising lead compound for further study.


Sujets)
Animaux , Humains , Rats , Médicaments issus de plantes chinoises , Monoamine oxidase , Inhibiteurs de la monoamine oxydase , Extraits de plantes , Relation structure-activité
16.
China Journal of Chinese Materia Medica ; (24): 4874-4879, 2019.
Article Dans Chinois | WPRIM | ID: wpr-1008176

Résumé

According to drug design flattening principle and using podophyllotoxin or 4'-demethylepipodophyllotoxin and aldehydes as starting material,a series of podophyllotoxin derivatives containing an imine structure with low toxicity were highly effective synthesized. Nine target compounds were successfully synthesized,and their structures were confirmed by ~1H-NMR,HR-ESI-MS and melting point data analysis. Using etoposide as positive control drug,nine target compounds were screened for cytotoxicity against He La cells in vitro by MTT method. The antitumor activity screening results showed that compound 6 b,6 d,6 e,6 f,6 g,6 i exhibited higher inhibitory rate against He La cells than those of control drug VP-16. It provides some practical reference value for the further development on the structure modification of podophyllotoxin and study on anti-tumor activity.


Sujets)
Antinéoplasiques/pharmacologie , Conception de médicament , Tests de criblage d'agents antitumoraux , Podophyllotoxine/pharmacologie , Relation structure-activité
17.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 15-21, 2019.
Article Dans Anglais | WPRIM | ID: wpr-776910

Résumé

Protein tyrosine phosphatase 1B (PTP1B) has led to an intense interest in developing its inhibitors as anti-diabetes, anti-obesity and anti-cancer agents. The fruits of Rubus chingii (Chinese raspberry) were used as a kind of dietary traditional Chinese medicine. The methanolic extract of R. chingii fruits exhibited significant PTP1B inhibitory activity. Further bioactivity-guided fractionation resulted in the isolation of three PTP1B inhibitory ursane-type triterpenes: ursolic acid (1), 2-oxopomolic acid (2), and 2α, 19α-dihydroxy-3-oxo-urs-12-en-28-oic acid (3). Kinetics analyses revealed that 1 was a non-competitive PTP1B inhibitor, and 2 and 3 were mixed type PTP1B inhibitors. Compounds 1-3 and structurally related triterpenes (4-8) were further analyzed the structure-activity relationship, and were evaluated the inhibitory selectivity against four homologous protein tyrosine phosphatases (TCPTP, VHR, SHP-1 and SHP-2). Molecular docking simulations were also carried out, and the result indicated that 1, 3-acetoxy-urs-12-ene-28-oic acid (5), and pomolic acid-3β-acetate (6) bound at the allosteric site including α3, α6, and α7 helix of PTP1B.


Sujets)
Humains , Antienzymes , Chimie , Métabolisme , Fruit , Chimie , Cinétique , Méthanol , Chimie , Simulation de docking moléculaire , Structure moléculaire , Extraits de plantes , Chimie , Liaison aux protéines , Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Métabolisme , Protein Tyrosine Phosphatases , Rubus , Chimie , Relation structure-activité , Triterpènes , Chimie , Métabolisme
18.
Chinese Journal of Natural Medicines (English Ed.) ; (6): 469-474, 2019.
Article Dans Anglais | WPRIM | ID: wpr-776864

Résumé

Withaminimas A-F (1-6), six new withaphysalin-type withanolides were isolated from the aerial parts of Physalis minima L.. The structures of these compounds were elucidated through a variety of spectroscopic techniques including HR-MS, NMR, and ECD. Compound 1 belongs to rare 18-norwithanolides, and 2-3 were 13/14-secowithanolides. According to the traditional usage of P. minima, inhibitory effects on nitric oxide (NO) production in lipopolysaccaride-activated RAW264.7 macrophages were evaluated, and compounds 1-4 exhibited significant inhibitory effects with IC values among 3.91-18.46 μmol·L.


Sujets)
Animaux , Souris , Anti-inflammatoires , Chimie , Pharmacologie , Médicaments issus de plantes chinoises , Chimie , Pharmacologie , Lipopolysaccharides , Pharmacologie , Macrophages , Allergie et immunologie , Structure moléculaire , Physalis , Chimie , Relation structure-activité , Withanolides , Chimie , Pharmacologie
19.
China Journal of Chinese Materia Medica ; (24): 2532-2537, 2019.
Article Dans Chinois | WPRIM | ID: wpr-773230

Résumé

According to drug design flattening principle,a series of novel indole podophyllotoxin derivatives which were introduced different indole substituents in C-4 position on the basis of podophyllotoxin nucleus were synthesized with the starting material podophyllotoxin and 1 H-indole-5-carboxylic acid. Its anti-tumor activity in vitro was tested in order to screen for high-efficiency and low-toxic compounds. Six target compounds were synthesized,and were confirmed by~1 H-NMR,~(13)C-NMR,HR-ESI-MS and melting point determination analysis. All these target compounds were not reported by previous literature. Using etoposide as positive control drug,all the target compounds were screened for cytotoxicity against He La cells,K562 cells and K562/A02 cell in vitro by MTT method. The antitumor activity screening results showed that compounds 4 b,4 e,4 f exhibited higher inhibitory rate against He La cells and K562 cells than those of control drug VP-16. This route has the advantages on simple operation and reasonable design,provides some practical reference value for the further development on the structure modification of podophyllotoxin and study on anti-tumor activity.


Sujets)
Humains , Antinéoplasiques , Pharmacologie , Tests de criblage d'agents antitumoraux , Cellules HeLa , Indoles , Pharmacologie , Cellules K562 , Podophyllotoxine , Pharmacologie , Relation structure-activité
20.
Journal of Southern Medical University ; (12): 253-256, 2019.
Article Dans Chinois | WPRIM | ID: wpr-772090

Résumé

B cell linker (BLNK) is a key linker protein of B cell receptor (BCR) signaling pathway. BLNK participates in the regulation of PLC-γactivity and the activation of Ras pathway through its typical structure and interaction network with other proteins, and is thus widely involved in the regulation of B cell proliferation, differentiation, apoptosis and signal transduction. Furthermore, it is closely related to anaphylactic diseases, multiple sclerosis, chromosomal aneuploidy, aneuglobulinemia, B lymphocytic leukemia and lymphoma. Herein we review the structure and biological function of BLNK and its role in B cell-related diseases. BLNK can cooperate with a series of effective proteins to activate BCR signaling pathway, thereby regulating the development, maturation and function of B cells. The functional mutation of BLNK can destroy the homeostasis of B cells and affect the development and maturation of B cells, which leads to the occurrence of B cell related diseases. A comprehensive understanding of the biological functions of BLNK not only provides insights into the pathogenesis of B cell-related diseases, but also inspires new ideas and helps to find breakthroughs for the treatment of these diseases with BLNK as the therapeutic target.


Sujets)
Humains , Protéines adaptatrices de la transduction du signal , Chimie , Génétique , Physiologie , Apoptose , Lymphocytes B , Biologie cellulaire , Physiologie , Différenciation cellulaire , Prolifération cellulaire , Mutation , Récepteurs pour l'antigène des lymphocytes B , Chimie , Physiologie , Transduction du signal , Relation structure-activité
SÉLECTION CITATIONS
Détails de la recherche