Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. J. Pharm. Sci. (Online) ; 59: e22304, 2023. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1447564

RESUMO

Abstract Vascular endothelial growth factor (VEGF) is an essential angiogenic factor in breast cancer development and metastasis. Small interfering RNAs (siRNAs) can specifically silence genes via the RNA interference pathway, therefore were investigated as cancer therapeutics. In this study, we investigated the effects of siRNAs longer than 30 base pairs (bp) loaded into chitosan nanoparticles in triple-negative breast cancer cells, compared with conventional siRNAs. 35 bp long synthetic siRNAs inhibited VEGF gene expression by 51.2% and increased apoptosis level by 1.75-fold in MDA-MB-231 cell lines. Furthermore, blank and siRNA-loaded chitosan nanoparticles induced expression of IFN-γ in breast cancer cells. These results suggest that long synthetic siRNAs can be as effective as conventional siRNAs, when introduced into cells with chitosan nanoparticles


Assuntos
RNA Interferente Pequeno/farmacologia , Fator A de Crescimento do Endotélio Vascular/análise , Quitosana/efeitos adversos , Nanopartículas/classificação , Neoplasias de Mama Triplo Negativas/patologia , Metástase Neoplásica/diagnóstico
2.
Braz. J. Pharm. Sci. (Online) ; 58: e19668, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1383976

RESUMO

Abstract Granulocyte macrophage colony-stimulating factor (GM-CSF) has been shown to promote the growth, proliferation, and migration of endothelial and keratinocyte cells. Chitosan has been widely used as a biopolymer in wound-healing studies. The aim of this study was to investigate the in vitro proliferative effects of chitosan/pGM-CSF complexes as well as the therapeutic role of the complexes in an in vivo rat wound model. The effect of complexes on cell proliferation and migration was examined. Wounds were made in Wistar-albino rats, and examined histopathologically. The cell proliferation and migration were increased weight ratio- and time-dependently in HaCaT and NIH-3T3 cell lines. Wound healing was significantly accelerated in rats treated with the complexes. These results showed that the delivery of pGM-CSF using chitosan complexes could play an accelerating role in the cell proliferation, migration, and wound-healing process.


Assuntos
Animais , Feminino , Ratos , Terapêutica , Cicatrização , Ferimentos e Lesões/induzido quimicamente , Usos Terapêuticos , Quitosana/efeitos adversos , Técnicas In Vitro/métodos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA