Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Tipo de estudo
Intervalo de ano
1.
Biol. Res ; 54: 37-37, 2021. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1505822

RESUMO

BACKGROUND: Breast cancer is the most frequently diagnosed cancer, and no effective treatment solution has yet been found. The number of studies based on the research of novel natural compounds in the treatment of breast cancer has been increasing in recent years. The anticancer properties of natural compounds are related to the regulation of microRNA (miRNA) expression. Therefore, changing the profile of miRNAs with the use of natural products is very important in cancer treatment. However, the role of vulpinic acid and related miRNAs in breast cancer progression remains unknown. Vulpinic acid, methyl (as2E)-2-(3-hydroxy-5-oxo-4-phenylfuran-2-ylidene)-2 phenylacetate, is a natural product extracted from the lichen species and shows an anticancer effect on different cancer cells. METHODS: This study examines the effects of vulpinic acid on the miRNA levels of breast cancer (MCF-7) cells and its relationship with cell proliferation and apoptosis levels. The antiproliferative effect of vulpinic acid was screened against MCF-7 breast cancer cells and MCF-12A breast epithelial cells using the xCELLigence real-time cell analysis system. We analyzed the altered miRNA expression profile in MCF-7 breast cancer cells versus MCF-12A cells following their response to vulpinic acid through microarray analysis. The microarray analysis results were confirmed through quantitative real-time PCR and bioinformatics analysis. RESULTS: The results of the miRNA array and bioinformatic analyses demonstrated that 12 miRNAs were specifically responsive to vulpinic acid in MCF-7 breast cancer cells. This is the first study to reveal that vulpinic acid inhibits the expression of 12 miRNAs and suppresses breast cancer cell proliferation. The study also revealed that vulpinic acid may downregulate the expression of 12 miRNAs by repressing the FOXO-3 gene. The miRNA targets were mainly found to play a role in the apoptosis, cell cycle and MAPK pathways. Moreover, Bcl-2, Bax, procaspase-3 and procas-pase-9 protein levels were assessed by western blot analysis for validation of apoptosis at the protein level. CONCLUSION: This study revealed the molecular mechanisms of vulpinic acid on breast cancer and showed that vulpinic acid regulates apoptosis signaling pathways by decreasing the expression of miRNAs. The miRNA expression patterns illuminate the underlying effect of vulpinic acid in breast cancer treatment.


Assuntos
Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , MicroRNAs/genética , Fenilacetatos , Regulação Neoplásica da Expressão Gênica , Células MCF-7 , Furanos
2.
Biol. Res ; 53: 19, 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1114696

RESUMO

BACKGROUND: Breast cancer is the most common cancer types among women. Recent researches have focused on determining the efficiency of alternative molecules and miRNAs in breast cancer treatment. The AIMof this study was to determine the effect of usnic acid response-miR-185-5p on proliferation in the breast cancer cell and to determine its relationship with apoptosis pathway. METHODS: The cell proliferation and cell apoptosis rate were significantly increased following the ectopic expression of miR-185-5p in BT-474 cells. Furthermore, the results of cell cycle assay performed by flow cytometry revealed that the transfection with miR-185-5p induced G1/S phase arrest. The apoptosis-related genes expression analysis was performed by qRT-PCR and the direct target of miR-185-5p in BT-474 cells was identified by western blot and luciferase reporter assay. RESULTS: Our data showed that miR-185-5p can cause significant changes in apoptosis-related genes expression levels, suggesting that cell proliferation was suppressed by miR-185-5p via inducing apoptosis in breast cancer cells. According to western blot results, miR-185-5p lead to decrease BCL2 protein level in BT-474 cells and direct target of miR-185-5p was identified as BCL by luciferase reporter assay. CONCLUSION: This study revealed that miR-185-5p may be an effective agent in the treatment of breast cancer.


Assuntos
Humanos , Feminino , Benzofuranos/metabolismo , Neoplasias da Mama/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , MicroRNAs/genética , Neoplasias da Mama/metabolismo , Transfecção , Transdução de Sinais , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
3.
J Environ Biol ; 2011 Nov; 32(6): 839-844
Artigo em Inglês | IMSEAR | ID: sea-146655

RESUMO

The use of biological responses to contaminant exposure by lichen species has become a useful tool in environmental quality evaluation and risk assesment. Lichen Hypogymnia physodes and Usnea hirta samples were collected in 2006 from 10 sites around iron-steel factory in Karabük, Turkey. H. physodes and U. hirta samples from Yenice forest were used as a control. The aim of present study was to evaluate the bioaccumulation ability and to determine the environmental impact of an iron-steel factory in Karabük. Seven elements (Zn, Cu, Mn, Fe, Pb, Ni, Cr and Cd) were analysed by atomic absorption spectrometry (AAS). The analytical results were compared statistically by using SPSS. As expected, the study area (Yenice forest, Karabük) chosen as control site (site no 11) showed significantly lower impact in comparison to other site (site no 1-10). Compared with the two lichen species, H. physodes showed highest metal accumulating capacity while U. hirta showed lowest. These criteria attested the best suitability for H. physodes, followed by U. hirta.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA