Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Adicionar filtros








Intervalo de ano
1.
Braz. j. med. biol. res ; 33(11): 1369-77, Nov. 2000. tab, graf
Artigo em Inglês | LILACS | ID: lil-273214

RESUMO

The effects of transient forebrain ischemia, reperfusion and ischemic preconditioning on rat blood platelet ATP diphosphohydrolase and 5'-nucleotidase activities were evaluated. Adult Wistar rats were submitted to 2 or 10 min of single ischemic episodes, or to 10 min of ischemia 1 day after a 2-min ischemic episode (ischemic preconditioning) by the four-vessel occlusion method. Rats submitted to single ischemic insults were reperfused for 60 min and for 1, 2, 5, 10 and 30 days after ischemia; preconditioned rats were reperfused for 60 min 1 and 2 days after the long ischemic episode. Brain ischemia (2 or 10 min) inhibited ATP and ADP hydrolysis by platelet ATP diphosphohydrolase. On the other hand, AMP hydrolysis by 5'-nucleotidase was increased after 2, but not 10, min of ischemia. Ischemic preconditioning followed by 10 min of ischemia caused activation of both enzymes. Variable periods of reperfusion distinctly affected each experimental group. Enzyme activities returned to control levels in the 2-min group. However, the decrease in ATP diphosphohydrolase activity was maintained up to 30 days of reperfusion after 10-min ischemia. 5'-Nucleotidase activity was decreased 60 min and 1 day following 10-min ischemia; interestingly, enzymatic activity was increased after 2 and 5 days of reperfusion, and returned to control levels after 10 days. Ischemic preconditioning cancelled the effects of 10-min ischemia on the enzymatic activities. These results indicate that brain ischemia and ischemic preconditioning induce peripheral effects on ecto-enzymes from rat platelets involved in nucleotide metabolism. Thus, ATP, ADP and AMP degradation and probably the generation of adenosine in the circulation may be altered, leading to regulation of microthrombus formation since ADP aggregates platelets and adenosine is an inhibitor of platelet aggregation


Assuntos
Animais , Ratos , Masculino , 5'-Nucleotidase/metabolismo , Apirase/metabolismo , Plaquetas/química , Isquemia Encefálica/enzimologia , Análise de Variância , Precondicionamento Isquêmico , Ratos Wistar , Fatores de Tempo
2.
Braz. j. med. biol. res ; 27(5): 1123-1128, May 1994.
Artigo em Inglês | LILACS | ID: lil-319814

RESUMO

Cerebral ischemia causes cell death of vulnerable neurons in mammalian brain. Wistar adult rats (male and female, weighing 180-280 g) were submitted to 2 min, 10 min, or to 2 and 10 min (separated by a 24-h interval) of transient forebrain ischemia by the four-vessel occlusion method. Animals subjected to the longer ischemic episodes had massive necrosis of pyramidal CA1 cells of the hippocampus, while animals receiving double ischemia (2 + 10 min) showed neuronal tolerance to the ischemic insult. ATP-diphosphohydrolase activity from hippocampal synaptosomes was assayed in these three groups (N = 6 animals/group) under two conditions: no reperfusion and 5-min of reperfusion. The control values for ATPase and ADPase activities were 144.7 +/- 18.8 and 60.6 +/- 5.24 nmol Pi min-1 mg protein-1, respectively. The 10-min group without reperfusion showed an enhancement of approximately 20 for ATPase and ADPase activities. In reperfused rats, only the 2-min group had a 20 increase in both enzymatic activities. We suggest that modulation of ATP-diphosphohydrolase activity might be involved in molecular events that follow both ischemia and reperfusion.


Assuntos
Animais , Masculino , Feminino , Ratos , Apirase , Ataque Isquêmico Transitório/enzimologia , Hipocampo , Sinaptossomos , Adenosina Trifosfatases , Ratos Wistar , Reperfusão , Fatores de Tempo
3.
Braz. j. med. biol. res ; 27(5): 1111-1115, May 1994.
Artigo em Inglês | LILACS | ID: lil-319815

RESUMO

ATP diphosphohydrolase (EC 3.6.1.5; apyrase) is an enzyme that can promote ATP and ADP hydrolysis to AMP plus inorganic phosphate and depends on divalent cations such as Ca2+ or Mg2+. In previous papers we described this enzyme in the synaptosomal fraction from the central and peripheral nervous system. The present report examines whether cadmium acetate could affect the in vitro activity of the enzyme in the synaptosomal fraction from the cerebral cortex of adult male Wistar rats. Cadmium (Cd2+), a heavy metal with neurotoxic effects, inhibited the enzyme in a concentration-dependent manner. All concentrations tested (0.05-1.0 mM) significantly inhibited the hydrolysis of both substrates (ATP and ADP), with the exception of 0.05 mM on ATP hydrolysis. The kinetic data indicate a noncompetitive inhibition between the cations Cd2+ and Ca2+.


Assuntos
Animais , Masculino , Ratos , Apirase , Cádmio , Córtex Cerebral/enzimologia , Sinaptossomos , Difosfato de Adenosina , Adenosina Trifosfatases , Trifosfato de Adenosina , Apirase , Hidrólise , Cinética , Ratos Wistar , Especificidade por Substrato
4.
Braz. j. med. biol. res ; 25(2): 187-91, 1992. tab
Artigo em Inglês | LILACS | ID: lil-109017

RESUMO

It is known that early malnutrition causes hyposensitivity to serotonergic, gabaergic, catecholaminergic and opioid stimulation. In the present study, we determined whether adult rats undernourished during suckling presented an altered response to caffeine admninistration in a locomotor actiovityyy test. Rats were undernourished during suckling by feeding their dams a 7% casein diet. During the same period, well-nourished dams were fed a 28% casein diet. Animals (90-100 days of age) were habituated to the apparatus. Thereaftert, a dose-response curve for caffeine (2.5, 10.0, 20.0, 40.0 and 120.0 umol/kg, ip) was determined. During handling sessions, undernourished rats presented lower activity scores than well-nourished animals (average values 44.2 ñ 16.4 vs 57.9 ñ 15.4). Well-nourished and undernourished rats responded in a similar way to caffeine administration by increasing the locomotor activity in a dose-dependent manner. Although undernourished animals present an altered sensitivity to various neuropharmacological compounds, the present results indicate that their sensitivity to the locomotor-actiivating effect of caffeine is the same as that of rats well-nourished during suckling


Assuntos
Ratos , Adenosina , Aleitamento Materno , Cafeína/administração & dosagem , Movimento , Distúrbios Nutricionais , Desnutrição Proteico-Calórica/efeitos adversos
5.
Braz. j. med. biol. res ; 24(5): 515-26, 1991. tab
Artigo em Inglês | LILACS | ID: lil-99484

RESUMO

Early undernutrition can cause permanent functional changes in the nervous system. Alterations in enzymes involved in neurotransmiter metabolism have been reported to result from early undernutrition. In a previous study, we demonstrated that undernutrition during suckling decreaseATP and ADP hydrolysis by synaptosomes from cerebral cortex by abouth 20% of the value found in 20-day-old well-nourished rats (j.B.T. Rocha, C.F. Melo, J.J.F.Sarkis and R.D. Dias, British Journal of Nutrition, 63:273-283, 1990). In the present study, we investigated whether this deficit persists in synaptosomes from cerebral cortex of nutritionally rehabilitated adult rats. rats were undernourished from birth to 25 days of life by feeding their dams a 7% casein (w/w) diet, while well-nourished offspring were fed by mothers maintained on a 28% casein diet. In contrast to the results previously obtained in young rats, the synaptosomes obtained from the cerebral cortex of early undernourished adult rats hydrolyzed ATP and ADP more efficiently than did those obtained from well-nourished rats. Specific activity (nmol min-1 mg protein-1, mean ñ SD) was 114.9ñ9.5 for undernourished rats (N=8) for ATP, and 50.4ñ6.1 (N=8) vs 38.8ñ4.5 (N=8) for ADP. These results suggest that the deficits found in young rats disappear in rehabilitation adult rats


Assuntos
Ratos , Animais , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Córtex Cerebral/metabolismo , Desnutrição Proteico-Calórica/metabolismo , Sinaptossomos/metabolismo , Fatores Etários , Apirase/metabolismo , Biomarcadores , Peso Corporal , Encéfalo/enzimologia , Encéfalo/crescimento & desenvolvimento , Córtex Cerebral/enzimologia , Hidrólise , Tamanho do Órgão , Desnutrição Proteico-Calórica/enzimologia , Transmissão Sináptica , Sinaptossomos/enzimologia
6.
Braz. j. med. biol. res ; 23(10): 935-9, 1990. tab
Artigo em Inglês | LILACS | ID: lil-91629

RESUMO

In the present study, we examined the ontogeny of ATP and ADP hydrolysis by cerebral cortex symptosomes from rats of various ages (0-, 7-, 14-, 21- and 60 to 90-day-old rats) in order to learn whether hydrolytic activity increases during the period of intense brain grwth, as has been reported for other enzymes involved in neurotransmitter metabolism. the results demonstrate that ATP and ADP hydrolyzing activities increase in parallel from birth until the second postnatal week (about 4-fold), followed by a slight and statistically insignificant increase until the animal reaches adulthood. The maximum increase in nucleotide hidrolysis coincided with mximum brain growth, which may indicate a role for the enzyme in neurotransmission. Furthermore, the parallel development of both activities (ATPase and ADPase) strongly suggest that a single enzyme, an ATP diphosphohydrolase, is involved in ATP and ADP hydrolisis by the synaptosomal fraction


Assuntos
Ratos , Animais , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Córtex Cerebral/fisiologia , Crescimento , Sinaptossomos/fisiologia , Análise de Variância , Cérebro/crescimento & desenvolvimento , Hidrólise , Ratos Wistar
7.
Braz. j. med. biol. res ; 23(10): 969-73, 1990. tab
Artigo em Inglês | LILACS | ID: lil-91634

RESUMO

Several studies have indicated that chlorpromazine and its metabolites affect ATP hydrolysis by brain and liver plasma membranes in vitro. The present report examines whether chronic treatment (12 days) with high doses of chlorpromazine (10 and 40 mg/kg) could affect ATP and ADP hydrolysis by synaptosomal fractions from the rate caudate nucleus. Both doses of chlorpromazine caused significant and paralled decreases (23 to 31%) in the ATP and ADP hydrolysis. The parallelism between the effects of chlorpromazine on ATP and ADP hydrolys suggests the participation of a single enzyme (ATP diphosphohydrolase) in nucleotide hydrolysis


Assuntos
Ratos , Animais , Masculino , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Núcleo Caudado/fisiologia , Clorpromazina/uso terapêutico , Sinaptossomos , Sinaptossomos/fisiologia , Análise de Variância , Peso Corporal/efeitos dos fármacos , Clorpromazina/administração & dosagem , Hidrólise , Ratos Wistar
8.
Braz. j. med. biol. res ; 22(3): 303-14, 1989. ilus, tab
Artigo em Inglês | LILACS | ID: lil-70684

RESUMO

1. The synaptosomal fraction isolated from hypothalamus of adult rats on sucrose density gradient hydrolyzes the labile phosphatase from ATP and ADP, thereby satisfying the general definition of apyrase activity. 2. The parallel behavior of ATPase and ADPase activities under different reaction conditions suggests the presence of a "true" apyrase enzyme. The optimum conditions for the are the same for both nucleotides: pH 8.0, 0.6 mM nucleotide and 1.5 mM cation. At temperatures between 10 and 40-C, both activities increase with no change in the ATP/ADP hydrolysis ratio. Thermal inactivation or inhibition of the enzyme activity by iodoacetamide, p-hydroxynercuribenzoate or 2- mercaptoethanol affected the hydrolysis of both substrates in a similar manner. 3- Adenylate Kinase and phyrophosphatase activities were not detected in the preparation. 4. The enzyme is located on the outer surface of the synaptosomal membrane: intact and lysed synaptosomes have similar activity and the supernatant obtained by centrifugation of intact synaptosomal preparations does not hydrolyze ATP or ADP


Assuntos
Ratos , Animais , Apirase/metabolismo , Hipotálamo/enzimologia , Sinaptossomos/enzimologia , Cinética , L-Lactato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA