Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Indian J Exp Biol ; 2014 Feb; 52(2): 181-188
Artigo em Inglês | IMSEAR | ID: sea-150348

RESUMO

Double haploid technique is not routinely used in legume breeding programs, though recent publications report haploid plants via anther culture in chickpea (Cicer arietinum L.). The focus of this study was to develop an efficient and reproducible protocol for the production of double haploids with the application of multiple stress pre-treatments such as centrifugation and osmotic shock for genotypes of interest in chickpea for their direct use in breeding programs. Four genotypes, ICC 4958, WR315, ICCV 95423 and Arearti were tested for anther culture experiments. The yield was shown to be consistent with 3-5 nucleate microspores and 2-7 celled structures with no further growth. To gain a further insight into the molecular mechanism underlying the switch from microsporogenesis to androgenesis, bioinformatics tools were employed. The challenges on the roles of such genes were reviewed while an attempt was made to find putative candidates for androgenesis using Expressed Sequenced Tags (EST) and interolog based protein interaction analyses.


Assuntos
Cruzamento , Cicer/genética , Biologia Computacional , Etiquetas de Sequências Expressas , Fabaceae/genética , Genótipo , Haploidia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Mapas de Interação de Proteínas/genética , Estresse Fisiológico
2.
J Biosci ; 2012 Nov; 37 (5): 811-820
Artigo em Inglês | IMSEAR | ID: sea-161744

RESUMO

Molecular markers are the most powerful genomic tools to increase the efficiency and precision of breeding practices for crop improvement. Progress in the development of genomic resources in the leading legume crops of the semi-arid tropics (SAT), namely, chickpea (Cicer arietinum), pigeonpea (Cajanus cajan) and groundnut (Arachis hypogaea), as compared to other crop species like cereals, has been very slow. With the advances in next-generation sequencing (NGS) and high-throughput (HTP) genotyping methods, there is a shift in development of genomic resources including molecular markers in these crops. For instance, 2,000 to 3,000 novel simple sequence repeats (SSR) markers have been developed each for chickpea, pigeonpea and groundnut. Based on Sanger, 454/FLX and Illumina transcript reads, transcriptome assemblies have been developed for chickpea (44,845 transcript assembly contigs, or TACs) and pigeonpea (21,434 TACs). Illumina sequencing of some parental genotypes of mapping populations has resulted in the development of 120 million reads for chickpea and 128.9 million reads for pigeonpea. Alignment of these Illumina reads with respective transcriptome assemblies have provided >10,000 SNPs each in chickpea and pigeonpea. A variety of SNP genotyping platforms including GoldenGate, VeraCode and Competitive Allele Specific PCR (KASPar) assays have been developed in chickpea and pigeonpea. By using above resources, the first-generation or comprehensive genetic maps have been developed in the three legume speciesmentioned above. Analysis of phenotyping data together with genotyping data has provided candidate markers for drought-tolerance-related root traits in chickpea, resistance to foliar diseases in groundnut and sterility mosaic disease (SMD) and fertility restoration in pigeonpea. Together with these traitassociated markers along with those already available, molecular breeding programmes have been initiated for enhancing drought tolerance, resistance to fusarium wilt and ascochyta blight in chickpea and resistance to foliar diseases in groundnut. These trait-associated robust markers along with other genomic resources including genetic maps and genomic resources will certainly accelerate crop improvement programmes in the SAT legumes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA