Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 36(3): 220-226, Jul-Sep/2014. graf
Artigo em Inglês | LILACS | ID: lil-718443

RESUMO

Objective: Several studies support the hypothesis that metabolism impairment is involved in the pathophysiology of depression and that some antidepressants act by modulating brain energy metabolism. Thus, we evaluated the activity of Krebs cycle enzymes, the mitochondrial respiratory chain, and creatine kinase in the brain of rats subjected to prolonged administration of fluvoxamine. Methods: Wistar rats received daily administration of fluvoxamine in saline (10, 30, and 60 mg/kg) for 14 days. Twelve hours after the last administration, rats were killed by decapitation and the prefrontal cortex, cerebral cortex, hippocampus, striatum, and cerebellum were rapidly isolated. Results: The activities of citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV were decreased after prolonged administration of fluvoxamine in rats. However, the activities of complex II, succinate dehydrogenase, and creatine kinase were increased. Conclusions: Alterations in activity of energy metabolism enzymes were observed in most brain areas analyzed. Thus, we suggest that the decrease in citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV can be related to adverse effects of pharmacotherapy, but long-term molecular adaptations cannot be ruled out. In addition, we demonstrated that these changes varied according to brain structure or biochemical analysis and were not dose-dependent. .


Assuntos
Animais , Masculino , Encéfalo/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Fluvoxamina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Antidepressivos/administração & dosagem , Encéfalo/enzimologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Creatina Quinase/efeitos dos fármacos , Transtorno Depressivo/tratamento farmacológico , Transporte de Elétrons/efeitos dos fármacos , Malato Desidrogenase/efeitos dos fármacos , Ratos Wistar
2.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 36(2): 138-142, may. 13, 2014. graf
Artigo em Inglês | LILACS | ID: lil-710202

RESUMO

Objectives: Fenproporex is an amphetamine-based anorectic which is rapidly converted into amphetamine in vivo. Na+, K+-ATPase is a membrane-bound enzyme necessary to maintain neuronal excitability. Considering that the effects of fenproporex on brain metabolism are poorly known and that Na+, K+-ATPase is essential for normal brain function, this study sought to evaluate the effect of this drug on Na+, K+-ATPase activity in the hippocampus, hypothalamus, prefrontal cortex, and striatum of young rats. Methods: Young male Wistar rats received a single injection of fenproporex (6.25, 12.5, or 25 mg/kg intraperitoneally) or polysorbate 80 (control group). Two hours after the last injection, the rats were killed by decapitation and the brain was removed for evaluation of Na+, K+-ATPase activity. Results: Fenproporex decreased Na+, K+-ATPase activity in the striatum of young rats at doses of 6.25, 12.5, and 25 mg/kg and increased enzyme activity in the hypothalamus at the same doses. Na+, K+-ATPase activity was not affected in the hippocampus or prefrontal cortex. Conclusion: Fenproporex administration decreased Na+, K+-ATPase activity in the striatum even in low doses. However, in the hypothalamus, Na+, K+-ATPase activity was increased. Changes in this enzyme might be the result of the effects of fenproporex on neuronal excitability. .


Assuntos
Animais , Masculino , Anfetaminas/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Injeções Intraperitoneais , Ratos Wistar , Fatores de Tempo
3.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 36(2): 156-167, may. 13, 2014. graf
Artigo em Inglês | LILACS | ID: lil-710208

RESUMO

Introduction: Mitochondrial dysfunction has been postulated to participate in the development of many neuropsychiatric disorders, but there is no consensus as to its role. The aim of this paper is to review recent studies and to outline the current understanding of the association between mitochondrial dysfunction and psychiatric disorders. Methodology: We reviewed articles that evaluated mitochondrial dysfunction and psychiatric disorders, with a particular focus on depression, bipolar disorder, anxiety disorders, obsessive-compulsive disorder, and autism spectrum disorder, and the association between mitochondrial dysfunction and development of these disorders. Results: Evidence suggests that alterations in mitochondrial morphology, brain energy metabolism, and mitochondrial enzyme activity may be involved in the pathophysiology of different neuropsychiatric disorders, given their key role in energy metabolism in the cell. Conclusions: Understanding the interactions between mitochondrial dysfunction and development of psychiatric disorders may help establish more effective therapeutic strategies for these disorders and thus lead to better outcomes for affected subjects. .


Assuntos
Humanos , Sistema Nervoso Central/fisiopatologia , Transtornos Mentais/fisiopatologia , Mitocôndrias/fisiologia , Doenças Mitocondriais/fisiopatologia , Apoptose/fisiologia , Sistema Nervoso Central/metabolismo , Metabolismo Energético , Transtornos Mentais/etiologia , Transtornos Mentais/metabolismo , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA