Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Annals of Dermatology ; : 6-12, 2017.
Artigo em Inglês | WPRIM | ID: wpr-37420

RESUMO

BACKGROUND: Kinetin is a plant hormone that regulates growth and differentiation. Keratinocytes, the basic building blocks of the epidermis, function in maintaining the skin barrier. OBJECTIVE: We examined whether kinetin induces skin barrier functions in vitro and in vivo. METHODS: To evaluate the efficacy of kinetin at the cellular level, expression of keratinocyte differentiation markers was assessed. Moreover, we examined the clinical efficacy of kinetin by evaluating skin moisture, transepidermal water loss (TEWL), and skin surface roughness in patients who used kinetin-containing cream. We performed quantitative real-time polymerase chain reaction to measure the expression of keratinocyte differentiation markers in HaCaT cells following treatment. A clinical trial was performed to assess skin moisture, TEWL, and evenness of skin texture in subjects who used kinetin-containing cream for 4 weeks. RESULTS: Kinetin increased involucrin, and keratin 1 mRNA in HaCaT cells. Moreover, use of a kinetin-containing cream improved skin moisture and TEWL while decreasing roughness of skin texture. CONCLUSION: Kinetin induced the expression of keratinocyte differentiation markers, suggesting that it may affect differentiation to improve skin moisture content, TEWL, and other signs of skin aging. Therefore, kinetin is a potential new component for use in cosmetics as an anti-aging agent that improves the barrier function of skin.


Assuntos
Humanos , Antígenos de Diferenciação , Técnicas de Cultura de Células , Epiderme , Técnicas In Vitro , Queratina-1 , Queratinócitos , Cinetina , Plantas , Reação em Cadeia da Polimerase em Tempo Real , RNA Mensageiro , Envelhecimento da Pele , Pele , Resultado do Tratamento , Água
2.
Annals of Dermatology ; : 433-437, 2016.
Artigo em Inglês | WPRIM | ID: wpr-171612

RESUMO

BACKGROUND: We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. OBJECTIVE: We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. METHODS: To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. RESULTS: Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. CONCLUSION: These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation.


Assuntos
Western Blotting , Diferenciação Celular , Queratinócitos , Biologia Molecular , Energia Nuclear , Reação em Cadeia da Polimerase , Radiação Ionizante , RNA Mensageiro
3.
Annals of Dermatology ; : 327-334, 2016.
Artigo em Inglês | WPRIM | ID: wpr-105048

RESUMO

BACKGROUND: Dihydrotestosterone (DHT) induces androgenic alopecia by shortening the hair follicle growth phase, resulting in hair loss. We previously demonstrated how changes in the microRNA (miRNA) expression profile influenced DHT-mediated cell death, cell cycle arrest, cell viability, the generation of reactive oxygen species (ROS), and senescence. Protective effects against DHT have not, however, been elucidated at the genome level. OBJECTIVE: We showed that epigallocatechin gallate (EGCG), a major component of green tea, protects DHT-induced cell death by regulating the cellular miRNA expression profile. METHODS: We used a miRNA microarray to identify miRNA expression levels in human dermal papilla cells (DPCs). We investigated whether the miRNA expression influenced the protective effects of EGCG against DHT-induced cell death, growth arrest, intracellular ROS levels, and senescence. RESULTS: EGCG protected against the effects of DHT by altering the miRNA expression profile in human DPCs. In addition, EGCG attenuated DHT-mediated cell death and growth arrest and decreased intracellular ROS levels and senescence. A bioinformatics analysis elucidated the relationship between the altered miRNA expression and EGCG-mediated protective effects against DHT. CONCLUSION: Overall, our results suggest that EGCG ameliorates the negative effects of DHT by altering the miRNA expression profile in human DPCs.


Assuntos
Humanos , Envelhecimento , Alopecia , Pontos de Checagem do Ciclo Celular , Morte Celular , Sobrevivência Celular , Biologia Computacional , Di-Hidrotestosterona , Genoma , Cabelo , Folículo Piloso , MicroRNAs , Espécies Reativas de Oxigênio , Chá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA