Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Korean Journal of Radiology ; : 782-791, 2021.
Artigo em Inglês | WPRIM | ID: wpr-894764

RESUMO

Objective@#To evaluate the signal intensity of the periosteum using ultrashort echo time pulse sequence with threedimensional cone trajectory (3D UTE) with or without fat suppression (FS) to distinguish from artifacts in porcine tibias. @*Materials and Methods@#The periosteum and overlying soft tissue of three porcine lower legs were partially peeled away from the tibial cortex. Another porcine tibia was prepared as three segments: with an intact periosteum outer and inner layer, with an intact periosteum inner layer, and without periosteum. Axial T1 weighted sequence (T1 WI) and 3D UTE (FS) were performed. Another porcine tibia without periosteum was prepared and subjected to 3D UTE (FS) and T1 WI twice, with positional changes. Two radiologists analyzed images to reach a consensus. @*Results@#The three periosteal tissues that were partially peeled away from the cortex showed a high signal in 3D UTE (FS) and low signal on T1 WI. 3D UTE (FS) showed a high signal around the cortical surface with an intact outer and inner periosteum, and subtle high signals, mainly around the upper cortical surfaces with the inner layer of the periosteum and without periosteum. T1 WI showed no signal around the cortical surfaces, regardless of the periosteum state. The porcine tibia without periosteum showed changes in the high signal area around the cortical surface as the position changed in 3D UTE (FS). No signal was detected around the cortical surface in T1 WI, regardless of the position change. @*Conclusion@#The periosteum showed a high signal in 3D UTE and 3D UTE FS that overlapped with artifacts around the cortical bone.

2.
Korean Journal of Radiology ; : 782-791, 2021.
Artigo em Inglês | WPRIM | ID: wpr-902468

RESUMO

Objective@#To evaluate the signal intensity of the periosteum using ultrashort echo time pulse sequence with threedimensional cone trajectory (3D UTE) with or without fat suppression (FS) to distinguish from artifacts in porcine tibias. @*Materials and Methods@#The periosteum and overlying soft tissue of three porcine lower legs were partially peeled away from the tibial cortex. Another porcine tibia was prepared as three segments: with an intact periosteum outer and inner layer, with an intact periosteum inner layer, and without periosteum. Axial T1 weighted sequence (T1 WI) and 3D UTE (FS) were performed. Another porcine tibia without periosteum was prepared and subjected to 3D UTE (FS) and T1 WI twice, with positional changes. Two radiologists analyzed images to reach a consensus. @*Results@#The three periosteal tissues that were partially peeled away from the cortex showed a high signal in 3D UTE (FS) and low signal on T1 WI. 3D UTE (FS) showed a high signal around the cortical surface with an intact outer and inner periosteum, and subtle high signals, mainly around the upper cortical surfaces with the inner layer of the periosteum and without periosteum. T1 WI showed no signal around the cortical surfaces, regardless of the periosteum state. The porcine tibia without periosteum showed changes in the high signal area around the cortical surface as the position changed in 3D UTE (FS). No signal was detected around the cortical surface in T1 WI, regardless of the position change. @*Conclusion@#The periosteum showed a high signal in 3D UTE and 3D UTE FS that overlapped with artifacts around the cortical bone.

3.
Investigative Magnetic Resonance Imaging ; : 202-209, 2019.
Artigo em Inglês | WPRIM | ID: wpr-764185

RESUMO

PURPOSE: To investigate the temperature-based differences of cortical bone ultrashort echo time MRI (UTE-MRI) biomarkers between body and room temperatures. Investigations of ex vivo UTE-MRI techniques were performed mostly at room temperature however, it is noted that the MRI properties of cortical bone may differ in vivo due to the higher temperature which exists as a condition in the live body. MATERIALS AND METHODS: Cortical bone specimens from fourteen donors (63 ± 21 years old, 6 females and 8 males) were scanned on a 3T clinical scanner at body and room temperatures to perform T1, T2*, inversion recovery UTE (IR-UTE) T2* measurements, and two-pool magnetization transfer (MT) modeling. RESULTS: Single-component T2*, IR-T2*, short and long component T2*s from bi-component analysis, and T1 showed significantly higher values while the noted macromolecular fraction (MMF) from MT modeling showed significantly lower values at body temperature, as compared with room temperature. However, it is noted that the short component fraction (Frac1) showed higher values at body temperature. CONCLUSION: This study highlights the need for careful consideration of the temperature effects on MRI measurements, before extending a conclusion from ex vivo studies on cortical bone specimens to clinical in vivo studies. It is noted that the increased relaxation times at higher temperature was most likely due to an increased molecular motion. The T1 increase for the studied human bone specimens was noted as being significantly higher than the previously reported values for bovine cortical bone. The prevailing discipline notes that the increased relaxation times of the bound water likely resulted in a lower signal loss during data acquisition, which led to the incidence of a higher Frac1 at body temperature.


Assuntos
Feminino , Humanos , Biomarcadores , Temperatura Corporal , Incidência , Imageamento por Ressonância Magnética , Relaxamento , Doadores de Tecidos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA