Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Adicionar filtros








Intervalo de ano
1.
The Korean Journal of Parasitology ; : 163-172, 2022.
Artigo em Inglês | WPRIM | ID: wpr-939142

RESUMO

Kinesin-13 (Kin-13), a depolymerizer of microtubule (MT), has been known to affect the length of Giardia. Giardia Kin-13 (GlKin-13) was localized to axoneme, flagellar tips, and centrosomes, where phosphorylated forms of Giardia polo-like kinase (GlPLK) were distributed. We observed the interaction between GlKin-13 and GlPLK via co-immunoprecipitation using transgenic Giardia cells expressing Myc-tagged GlKin-13, hemagglutinin-tagged GlPLK, and in vitro-synthesized GlKin-13 and GlPLK proteins. In vitro-synthesized GlPLK was demonstrated to auto-phosphorylate and phosphorylate GlKin-13 upon incubation with [γ-32P]ATP. Morpholino-mediated depletion of both GlKin-13 and GlPLK caused an extension of flagella and a decreased volume of median bodies in Giardia trophozoites. Our results suggest that GlPLK plays a pertinent role in formation of flagella and median bodies by modulating MT depolymerizing activity of GlKin-13.

2.
The Korean Journal of Parasitology ; : 675-679, 2020.
Artigo em Inglês | WPRIM | ID: wpr-903843

RESUMO

MYB2 protein was identified as a transcription factor that showed encystation-induced expression in Giardia lamblia. Although nuclear import is essential for the functioning of a transcription factor, an evident nuclear localization signal (NLS) of G. lamblia MYB2 (GlMYB2) has not been defined. Based on putative GlMYB2 NLSs predicted by 2 programs, a series of plasmids expressing hemagglutinin (HA)-tagged GlMYB2 from the promoter of G. lamblia glutamate dehydrogenase were constructed and transfected into Giardia trophozoites. Immunofluorescence assays using anti-HA antibodies indicated that GlMYB2 amino acid sequence #507–#530 was required for the nuclear localization of GlMYB2, and this sequence was named as NLSGlMYB2. We further verified this finding by demonstrating the nuclear location of a protein obtained by the fusion of NLSGlMYB2 and G. lamblia glyceraldehyde 3-phosphate dehydrogenase, a non-nuclear protein. Our data on GlMYB2 will expand our understanding on NLSs functioning in G. lamblia.

3.
The Korean Journal of Parasitology ; : 675-679, 2020.
Artigo em Inglês | WPRIM | ID: wpr-896139

RESUMO

MYB2 protein was identified as a transcription factor that showed encystation-induced expression in Giardia lamblia. Although nuclear import is essential for the functioning of a transcription factor, an evident nuclear localization signal (NLS) of G. lamblia MYB2 (GlMYB2) has not been defined. Based on putative GlMYB2 NLSs predicted by 2 programs, a series of plasmids expressing hemagglutinin (HA)-tagged GlMYB2 from the promoter of G. lamblia glutamate dehydrogenase were constructed and transfected into Giardia trophozoites. Immunofluorescence assays using anti-HA antibodies indicated that GlMYB2 amino acid sequence #507–#530 was required for the nuclear localization of GlMYB2, and this sequence was named as NLSGlMYB2. We further verified this finding by demonstrating the nuclear location of a protein obtained by the fusion of NLSGlMYB2 and G. lamblia glyceraldehyde 3-phosphate dehydrogenase, a non-nuclear protein. Our data on GlMYB2 will expand our understanding on NLSs functioning in G. lamblia.

4.
The Korean Journal of Parasitology ; : 185-189, 2019.
Artigo em Inglês | WPRIM | ID: wpr-761721

RESUMO

To identify the component(s) involved in cell cycle control in the protozoan Giardia lamblia, cells arrested at the G1/S- or G2-phase by treatment with nocodazole and aphidicolin were prepared from the synchronized cell cultures. RNA-sequencing analysis of the 2 stages of Giardia cell cycle identified several cell cycle genes that were up-regulated at the G2-phase. Transcriptome analysis of cells in 2 distinct cell cycle stages of G. lamblia confirmed previously reported components of cell cycle (PcnA, cyclin B, and CDK) and identified additional cell cycle components (NEKs, Mad2, spindle pole protein, and CDC14A). This result indicates that the cell cycle machinery operates in this protozoan, one of the earliest diverging eukaryotic lineages.


Assuntos
Afidicolina , Técnicas de Cultura de Células , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Ciclina B , Perfilação da Expressão Gênica , Genes cdc , Giardia lamblia , Giardia , Nocodazol , Polos do Fuso
5.
Journal of Nutrition and Health ; : 1-7, 2016.
Artigo em Coreano | WPRIM | ID: wpr-201526

RESUMO

PURPOSE: The aim of this review is to comprehensively summarize the definition of vitamin D as a nutrient as well as a hormone-like molecule and its new function in prevention of various chronic diseases. METHODS: The review was written by the method for systematic reivew writing. Literatures from the various sources, including research articles, book chapters, proceedings and electronic materials as appropriate, were screened first and then reviewed and analyzed for the review. RESULTS: Vitamin D was originally considered as the essential nutrient as a vital carbon compound and was first discovered among children with osteomalacia, also known as ricket disease, characterized by poorly calcified bones which were easily bent rather than broken. Since that time, vitamin D has been known as the key nutrient to improve bone health. However, recently emerging study findings have shown that vitamin D acts as the hormone-like nutrient since it is synthesized like a hormone when our body needs and this particular vitamin also acts like a cell signaling ligand which regulates gene expression of various proteins. So far positive effects of vitamin D have been suggested for the action of anticancer, anti-immune function, and anti-cardiovascular disease, as well as antidiabetic function, etc. In this review, the definition for vitamin D as a nutrient vitamin as well as a hormone-like molecule, cell signaling mechanism of vitamin D, and finally the potential role for the prevention of chronic diseases are discussed. CONCLUSION: Vitamin D is now being considered as a vital nutrient as a vitamin and as a potential substance for prevention of several chronic diseases.


Assuntos
Criança , Humanos , Livros , Carbono , Doença Crônica , Expressão Gênica , Osteomalacia , Vitamina A , Vitamina D , Vitaminas , Redação
6.
Journal of Nutrition and Health ; : 59-62, 2016.
Artigo em Coreano | WPRIM | ID: wpr-201519

RESUMO

PURPOSE: Zinc, a biomineral present within and outside cells, manages various cellular mechanisms. In this study, we examined whether zinc was involved in vascular smooth muscle cell (VSMC) calcification via regulation of calcification inhibitor protein, osteopontin (OPN). METHODS: Rat aorta cell line (A7r5 cells) and primary vascular smooth muscle cells (pVSMCs) from rat aorta were cultured with phosphate (1-5 mM) and zinc (0-15 microM) as appropriate, along with osteoblasts (MC3T3-E1) as control. The cells were then stained for Ca and P deposition for calcification examination as well as osteopontin expression as calcification inhibitor protein was measured. RESULTS: Both Ca and phosphate deposition increased as the addition of phosphate increased. In the same manner, the expression of osteopontin was upregulated as the addition of phosphate increased in both cell types. When zinc was added, Ca and P deposition decreased in VSMCs, while it increased in osteoblasts. CONCLUSION: The results imply that zinc may prevent VSMC calcification by stimulating calcification inhibitor protein OPN synthesis in VSMCs.


Assuntos
Animais , Ratos , Aorta , Linhagem Celular , Músculo Liso Vascular , Osteoblastos , Osteopontina , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA