Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Adicionar filtros








Intervalo de ano
1.
Genet. mol. res. (Online) ; 7(1): 1-6, Jan. 2008. ilus
Artigo em Inglês | LILACS | ID: lil-553764

RESUMO

Ribonucleotide reductase (RNR) of the yeast Saccharomyces cerevisiae is a tetrameric protein complex, consisting of two large and two small subunits. The small subunits Y2 and Y4 form a heterodimer and are encoded by yeast genes RNR2 and RNR4, respectively. Loss of Y4 in yeast mutant rnr4delta can be compensated for by up-regulated expression of Y2, and the formation of a small subunit Y2Y2 homodimer that allows for a partially functional RNR. However, rnr4delta mutants exhibit slower growth than wild-type (WT) cells and are sensitive to many mutagens, amongst them UVC and photo-activated mono- and bi-functional psoralens. Cells of the haploid rnr4delta mutant also show a 3- to 4-fold higher sensitivity to the oxidative stress-inducing chemical stannous chloride than those of the isogenic WT. Both strains acquired increased resistance to SnCl2 with age of culture, i.e., 24-h cultures were more sensitive than cells grown for 2, 3, 4, and 5 days in liquid culture. However, the sensitivity factor of three to four (WT/mutant) did not change significantly. Cultures of the rnr4delta mutant in stationary phase of growth always showed higher frequency of budding cells (budding index around 0.5) than those of the corresponding WT (budding index <0.1), pointing to a delay of mitosis/cytokinesis.


Assuntos
Compostos de Estanho/toxicidade , Genes Fúngicos/genética , Mutagênicos/toxicidade , Ribonucleotídeo Redutases/genética , Saccharomyces cerevisiae/enzimologia , Sobrevivência Celular , Dimerização , Haploidia , Mutação , RNA Fúngico/biossíntese , Ribonucleotídeo Redutases/química , Saccharomycetales , Sensibilidade e Especificidade , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Fatores de Tempo
2.
Genet. mol. res. (Online) ; 5(4): 851-855, 2006. ilus
Artigo em Inglês | LILACS | ID: lil-482073

RESUMO

DNA isolation from some fungal organisms is difficult because they have cell walls or capsules that are relatively unsusceptible to lysis. Beginning with a yeast Saccharomyces cerevisiae genomic DNA isolation method, we developed a 30-min DNA isolation protocol for filamentous fungi by combining cell wall digestion with cell disruption by glass beads. High-quality DNA was isolated with good yield from the hyphae of Crinipellis perniciosa, which causes witches' broom disease in cacao, from three other filamentous fungi, Lentinus edodes, Agaricus blazei, Trichoderma stromaticum, and from the yeast S. cerevisiae. Genomic DNA was suitable for PCR of specific actin primers of C. perniciosa, allowing it to be differentiated from fungal contaminants, including its natural competitor, T. stromaticum.


Assuntos
Agaricales/genética , DNA Fúngico/isolamento & purificação , Genoma Fúngico/genética , Técnicas de Tipagem Micológica/métodos , Agaricales/classificação , DNA Fúngico/genética , Eletroforese em Gel de Ágar , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes
3.
Genet. mol. res. (Online) ; 1(1): 79-89, Mar. 2002.
Artigo em Inglês | LILACS | ID: lil-417649

RESUMO

The sensitivity responses of seven pso mutants of Saccharomyces cerevisiae towards the mutagens N-nitrosodiethylamine (NDEA), 1,2:7,8-diepoxyoctane (DEO), and 8-hydroxyquinoline (8HQ) further substantiated their allocation into two distinct groups: genes PSO1 (allelic to REV3), PSO2 (SNM1), PSO4 (PRP19), and PSO5 (RAD16) constitute one group in that they are involved in repair of damaged DNA or in RNA processing whereas genes PSO6 (ERG3) and PSO7 (COX11) are related to metabolic steps protecting from oxidative stress and thus form a second group, not responsible for DNA repair. PSO3 has not yet been molecularly characterized but its pleiotropic phenotype would allow its integration into either group. The first three PSO genes of the DNA repair group and PSO3, apart from being sensitive to photo-activated psoralens, have another common phenotype: they are also involved in error-prone DNA repair. While all mutants of the DNA repair group and pso3 were sensitive to DEO and NDEA the pso6 mutant revealed WT or near WT resistance to these mutagens. As expected, the repair-proficient pso7-1 and cox11-Delta mutant alleles conferred high sensitivity to NDEA, a chemical known to be metabolized via redox cycling that yields hydroxylamine radicals and reactive oxygen species. All pso mutants exhibited some sensitivity to 8HQ and again pso7-1 and cox11-Delta conferred the highest sensitivity to this drug. Double mutant snm1-Delta cox11-Delta exhibited additivity of 8HQ and NDEA sensitivities of the single mutants, indicating that two different repair/recovery systems are involved in survival. DEO sensitivity of the double mutant was equal or less than that of the single snm1-Delta mutant. In order to determine if there was oxidative damage to nucleotide bases by these drugs we employed an established bacterial test with and without metabolic activation. After S9-mix biotransformation, NDEA and to a lesser extent 8HQ, lead to significantly higher mutagenesis in an Escherichia coli tester strain WP2-IC203 as compared to WP2, whereas DEO-induced mutagenicity remained unchanged


Assuntos
DNA Fúngico/genética , Estresse Oxidativo/genética , Mutagênicos/toxicidade , Reparo do DNA/genética , Saccharomyces cerevisiae/genética , Compostos de Epóxi/toxicidade , DNA Fúngico/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Dietilnitrosamina/toxicidade , Genes Fúngicos , Oxiquinolina/toxicidade , Fenótipo , Proteínas de Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Reparo do DNA/efeitos dos fármacos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA