Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Electron. j. biotechnol ; 14(3): 3-3, May 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-602980

RESUMO

Increasing scarcity of irrigation water is a major threat to sustainable production of cotton (Gossypium hirsutum L.). Identifying genomic regions contributing to abiotic stress tolerance will help develop cotton cultivars suitable for water-limited regions through molecular marker-assisted breeding. A molecular mapping F2 population was derived from an intraspecific cross of the drought sensitive G. hirsutum cv. FH-901 and drought tolerant G. hirsutum cv. RH-510. Field data were recorded on physiological traits (osmotic potential and osmotic adjustment); yield and its component traits (seedcotton yield, number of bolls/plant and boll weight); and plant architecture traits (plant height and number of nodes per plant) for F2, F2:3 and F2:4 generations under well-watered versus water-limited growth conditions. The two parents were surveyed for polymorphism using 6500 SSR primer pairs. Joinmap3.0 software was used to construct linkage map with 64 polymorphic markers and it resulted into 35 markers mapped on 12 linkage groups. QTL analysis was performed by composite interval mapping (CIM) using QTL Cartographer2.5 software. In total, 7 QTLs (osmotic potential 2, osmotic adjustment 1, seedcotton yield 1, number of bolls/plant 1, boll weight 1 and plant height 1) were identified. There were three QTLs (qtlOP-2, qtlOA-1, and qtlPH-1) detected only in water-limited conditions. Two QTLs (qtlSC-1 and qtlBW-1) were detected for relative values. Two QTLs (qtlOP-1 and qtlBN-1) were detected for well-watered treatment. Significant QTLs detected in this study can be employed in MAS for molecular breeding programs aiming at developing drought tolerant cotton cultivars.


Assuntos
Secas , Gossypium/fisiologia , Gossypium/genética , Locos de Características Quantitativas , Adaptação Fisiológica , DNA de Plantas/genética , Variação Genética , Gossypium/crescimento & desenvolvimento , Mapeamento Cromossômico/métodos , Osmose , Polimorfismo Genético , Software
2.
Electron. j. biotechnol ; 13(5): 3-4, Sept. 2010. ilus, tab
Artigo em Inglês | LILACS | ID: lil-591885

RESUMO

Exploring genetic variation in Gossypium arboreum L. germplasm is useful as it contains many important genes conferring resistance to different stresses. In limited earlier studies, low level of genetic diversity was found by using conventional DNA marker systems which may impede future genome mapping studies. In the present investigation, we explored the extent of Single Nucleotide Polymorphisms (SNP) among 30 conserved regions of Expressed Sequence Tags (EST) of low copy genes between two genotypes of G. arboreum. A total of 27 SNPs including 21 substitutions and 6 Insertions and deletions (Indels) in 7804 bp were found between these genotypes with a frequency of one SNP per 371 bp and one Indel after every 1300 bp. Out of these SNPs, 52 percent were transitions, whilst 48 percent SNPs were transversion. In conclusion, SNPs are expedient markers that can explore polymorphism in highly conserved sequences where other markers are not effective.


Assuntos
Gossypium/genética , Polimorfismo de Nucleotídeo Único , Sequência Conservada , Etiquetas de Sequências Expressas , Marcadores Genéticos , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA