Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Biotechnology ; (12): 4744-4755, 2022.
Artigo em Chinês | WPRIM | ID: wpr-970345

RESUMO

Aspergillus niger is an important industrial strain which has been widely used for production of enzymes and organic acids. Genome modification of A. niger is required to further improve its potential for industrial production. CRISPR/Cas9 is a widely used genome editing technique for A. niger, but its application in industrial strains modification is hampered by the need for integration of a selection marker into the genome or low gene editing efficiency. Here we report a highly efficient marker-free genome editing method for A. niger based on CRISPR/Cas9 technique. Firstly, we constructed a co-expression plasmid of sgRNA and Cas9 with a replication initiation region fragment AMA1 (autonomously maintained in Aspergillus) by using 5S rRNA promoter which improved sgRNA expression. Meanwhile, a strain deficient in non-homologous end-joining (NHEJ) was developed by knocking out the kusA gene. Finally, we took advantage of the instability of plasmid containing AMA1 fragment to cure the co-expression plasmid containing sgRNA and Cas9 through passaging on non-selective plate. With this method, the efficiency of gene editing reached 100% when using maker-free donor DNA with a short homologous arm of 20 bp. This method may facilitate investigation of gene functions and construction of cell factories for A. niger.


Assuntos
Edição de Genes , Aspergillus niger/genética , Sistemas CRISPR-Cas/genética , Plasmídeos/genética
2.
Journal of Zhejiang University. Science. B ; (12): 63-72, 2021.
Artigo em Inglês | WPRIM | ID: wpr-880709

RESUMO

DNA is the hereditary material in humans and almost all other organisms. It is essential for maintaining accurate transmission of genetic information. In the life cycle, DNA replication, cell division, or genome damage, including that caused by endogenous and exogenous agents, may cause DNA aberrations. Of all forms of DNA damage, DNA double-strand breaks (DSBs) are the most serious. If the repair function is defective, DNA damage may cause gene mutation, genome instability, and cell chromosome loss, which in turn can even lead to tumorigenesis. DNA damage can be repaired through multiple mechanisms. Homologous recombination (HR) and non-homologous end joining (NHEJ) are the two main repair mechanisms for DNA DSBs. Increasing amounts of evidence reveal that protein modifications play an essential role in DNA damage repair. Protein deubiquitination is a vital post-translational modification which removes ubiquitin molecules or polyubiquitinated chains from substrates in order to reverse the ubiquitination reaction. This review discusses the role of deubiquitinating enzymes (DUBs) in repairing DNA DSBs. Exploring the molecular mechanisms of DUB regulation in DSB repair will provide new insights to combat human diseases and develop novel therapeutic approaches.

3.
Journal of Zhejiang University. Science. B ; (12): 38-46, 2021.
Artigo em Inglês | WPRIM | ID: wpr-880707

RESUMO

Maintenance of cellular homeostasis and genome integrity is a critical responsibility of DNA double-strand break (DSB) signaling. P53-binding protein 1 (53BP1) plays a critical role in coordinating the DSB repair pathway choice and promotes the non-homologous end-joining (NHEJ)-mediated DSB repair pathway that rejoins DSB ends. New insights have been gained into a basic molecular mechanism that is involved in 53BP1 recruitment to the DNA lesion and how 53BP1 then recruits the DNA break-responsive effectors that promote NHEJ-mediated DSB repair while inhibiting homologous recombination (HR) signaling. This review focuses on the up- and downstream pathways of 53BP1 and how 53BP1 promotes NHEJ-mediated DSB repair, which in turn promotes the sensitivity of poly(ADP-ribose) polymerase inhibitor (PARPi) in BRCA1-deficient cancers and consequently provides an avenue for improving cancer therapy strategies.

4.
Chinese Journal of Biotechnology ; (12): 1693-1699, 2017.
Artigo em Chinês | WPRIM | ID: wpr-243679

RESUMO

The development of genome editing techniques based on CRISPR (Clustered regularly interspaced short palindromic repeats)-Cas9 system has revolutionized biomedical researches. It can be utilized to edit genome sequence in almost any organisms including Caenorhabditis elegans, one of the most convenient and classic genetic model animals. The application of CRISPR-Cas9 mediated genome editing in C. elegans promotes the functional analysis of gene and proteins under many physiological conditions. In this mini-review, we summarized the development of CRISPR-Cas9-based genome editing in C. elegans.

5.
São Paulo; s.n; s.n; 2015. 107 p. tab, graf, ilus.
Tese em Português | LILACS | ID: biblio-847457

RESUMO

O DNA está constantemente exposto a danos causados tanto por agentes endógenos quanto exógenos. Estes podem causar diferentes tipos de lesões incluindo modificações de bases e do açúcar, além de quebras de fitas simples ou duplas. As quebras de duplas fitas, quando comparadas às demais, constituem as mais citotóxicas e podem resultar em deleções no DNA e instabilidade genética. Deleções no DNA mitocondrial (mtDNA) causam diversas doenças e estão envolvidas no processo de envelhecimento. No núcleo, as quebras de duplas fitas no DNA podem ser reparadas por recombinação homóloga (HR), ligação de pontas não homólogas (NHEJ) e anelamento de fita simples (SSA). No entanto, em mitocôndrias de células de mamíferos, o reparo de quebras de duplas fitas ainda não foi completamente caracterizado. Experimentos in vitro usando extratos mitocondriais de células de roedores mostraram que estes são capazes de reparar essas quebras, no entanto pouco é sabido sobre quais proteínas são responsáveis por cada etapa de reparo, bem como sua implicação na manutenção da integridade do genoma mitocondrial. Sendo assim, nesse trabalho investigamos a localização e função mitocondrial das proteínas ATM, Rad51, Rad52, Ku70/86 e DNA-PKCs, que são sabidamente envolvidas em reparo de quebras de duplas fitas no núcleo. Para identificar essas proteínas em mitocôndrias de células de mamíferos, mitocôndrias foram isoladas a partir de células da linhagem HEK293T, usando centrifugação diferencial seguida por gradiente de Percoll. Para as proteínas de recombinação homóloga, ATM e Rad51, imunodetectamos isoformas semelhantes em todos os compartimentos celulares. Já para a proteína Rad52 o mesmo anticorpo imunodetectou duas bandas distintas na mitocôndria ao passo que no núcleo foram quatro. Além disso, verificamos que baixos níveis de proteína Rad52, induzidos pela expressão de shRNA (short hairping RNA) específico, resultam em diminuição do número de cópias de mtDNA bem como acúmulo de deleções no genoma mitocondrial. Para as proteínas de NHEJ, DNA-PKCs e a subunidade Ku70, identificamos isoformas semelhantes em todos os compartimentos celulares. Já para a subunidade 86 do heterodímero Ku70/86 o anticorpo detectou, somente em mitocôndrias, uma banda menor de 50 kDa, a qual difere na região N-terminal da subunidade detectada no núcleo (86 KDa). Experimentos de co-imunprecitação de proteínas mostraram que essa isoforma menor compõe o heterodímero mitocondrial juntamente com a subunidade 70 (mtKu70/50) e que esse interage com DNA ligase III mitocondrial. Nossos resultados também mostraram que a estabilidade proteica de mtKu70/50 é regulada por ATM. Tratamento das células com peróxido de hidrogênio, que induz quebras de duplas fitas, aumentou a associação do heterodímero mtKu70/50 com o mtDNA, de forma independente de aumento da concentração proteica intra-mitocondrial. Já a diminuição dos níveis proteicos de Ku, induzida através de shRNA, resultou em diminuição do número de cópias de mtDNA e acumulo de danos nesse genoma. Extratos mitocondriais de células knockdown para Ku apresentaram menor atividade de reparo NHEJ em um ensaio in vitro, sugerindo que o acúmulo de danos nestas células é provavelmente devido a deficiências na via de NHEJ. Em conjunto, nossos dados sugerem que tanto HR quanto NHEJ operam em mitocôndrias. Além disso, a via de NHEJ mitocondrial utiliza o heterodímero mitocondrial Ku70/50 o qual está envolvido na manutenção do mtDNA. Ademais, nossos resultados mostram uma grande conservação molecular e funcional entre as vias de reparo de NHEJ e HR no núcleo e na mitocôndria, o que reforça sua importância para a manutenção da estabilidade genômica mitocondrial e, provavelmente a função mitocondrial


DNA is constantly exposed to damaging agents from both endogenous and exogenous sources. These can cause different types of DNA lesions that include base and sugar modifications and single and double strand breaks. DNA doublestrand breaks (DSBs) are among the most cytotoxic DNA lesions, which can result in deletions and genetic instability. Deletions in the mitochondrial DNA (mtDNA) cause numerous human diseases and drive normal aging. DSBs in the nuclear DNA are repaired by non-homologous DNA end joining (NHEJ), homologous recombination (HR) or Single Strand Annealing (SSA). Yet, repair of DSBs in mammalian mitochondria has not been fully characterized. Mitochondrial extracts from rodent cells are proficient in ligating DNA ends in vitro, but little is known about which proteins are responsible for each enzymatic step and its implication in mitochondrial genome maintenance. Thus, we investigated mitochondrial localization and function of DSBR (double strand break repair) proteins ATM, Rad51, Rad52, the Ku70/86 heterodimer and DNA-PKCs.To identify DSBR proteins in mammalian mitochondria, highly purified mitochondria from HEK293T cells were isolated using differential centrifugation followed by Percoll gradient. For HR proteins, we detected similar isoforms for ATM and Rad51 proteins in all cellular compartments. Two mitochondriaspecific isoforms of Rad52 were detected, while the same antibody detected four isoforms in the nucleus. In addition, lower Rad52 protein levels, induced by specific shRNA expression, result in decreased mtDNA copy number and accumulation of deleted mitochondrial genomes. For NHEJ proteins, similar isoforms of DNA-PKcs and the Ku70 subunit were detected in all cellular compartments. On the other hand, antibodies against the Ku86 subunit detected a smaller band in mitochondrial extracts (50 KDa), lacking the N-terminal region of the canonical isoform detected in the nucleus (86 KDa). The mitochondrial Ku70/50 heterodimer interacts with mitochondrial DNA ligase III, suggesting a role in DSBR. Moreover, stability of the mtKu heterodimer is regulated by ATM. Hydrogen peroxide treatment, which induces DSBs, increases mtKu70/50 association with the mtDNA and cells with reduced Ku levels, also induced by shRNA transfection, have lower mtDNA copy number and accumulate mtDNA damage. Moreover, mitochondrial extracts from Ku knockdown cells show lower NHEJ repair activity in an in vitro assay, suggesting that damage accumulation in these cells is likely due to deficiencies in NHEJ. Together, our data suggest that both HR and NHEJ operate in mitochondria. Also, mtNHEJ requires the Ku heterodimer and is involved in mtDNA maintenance. Moreover, our results indicate that there is a significant molecular and functional conservation between NHEJ and HR repair pathways in the nucleus and in mitochondria, which reinforces their importance for maintenance of mitochondrial genomic stability and, likely mitochondrial function


Assuntos
Reparo do DNA por Junção de Extremidades/genética , DNA Mitocondrial/genética , DNA/análise , Proteínas Mutadas de Ataxia Telangiectasia , Autoantígeno Ku , Rad51 Recombinase , Proteína Rad52 de Recombinação e Reparo de DNA
6.
Journal of the Korean Association of Oral and Maxillofacial Surgeons ; : 1-6, 2009.
Artigo em Coreano | WPRIM | ID: wpr-139668

RESUMO

DNA double-strand breaks (DSBs) occur commonly in the all living and in cycling cells. They constitute one of the most severe form of DNA damage, because they affect both strand of DNA. DSBs result in cell death or a genetic alterations including deletion, loss of heterozygosity, translocation, and chromosome loss. DSBs arise from endogenous sources like metabolic products and reactive oxygen, and also exogenous factors like ionizing radiation. Defective DNA DSBs can lead to toxicity and large scale sequence rearrangement that can cause cancer and promote premature aging. There are two major pathways for their repair: homologous recombination(HR) and non-homologous end-joining(NHEJ). The HR pathway is a known "error-free" repair mechanism, in which a homologous sister chromatid serves as a template. NHEJ, on the other hand, is a "error-prone" pathway, in which the two termini of the broken DNA molecule are used to form compatible ends that are directly ligated. This review aims to provide a fundamental understanding of how HR and NHEJ pathways operate, cause genome instability, and what kind of genes during the pathways are associated with head and neck cancer.


Assuntos
Humanos , Senilidade Prematura , Morte Celular , Cromátides , DNA , Dano ao DNA , Instabilidade Genômica , Mãos , Cabeça , Neoplasias de Cabeça e Pescoço , Perda de Heterozigosidade , Oxigênio , Radiação Ionizante , Irmãos
7.
Journal of the Korean Association of Oral and Maxillofacial Surgeons ; : 1-6, 2009.
Artigo em Coreano | WPRIM | ID: wpr-139665

RESUMO

DNA double-strand breaks (DSBs) occur commonly in the all living and in cycling cells. They constitute one of the most severe form of DNA damage, because they affect both strand of DNA. DSBs result in cell death or a genetic alterations including deletion, loss of heterozygosity, translocation, and chromosome loss. DSBs arise from endogenous sources like metabolic products and reactive oxygen, and also exogenous factors like ionizing radiation. Defective DNA DSBs can lead to toxicity and large scale sequence rearrangement that can cause cancer and promote premature aging. There are two major pathways for their repair: homologous recombination(HR) and non-homologous end-joining(NHEJ). The HR pathway is a known "error-free" repair mechanism, in which a homologous sister chromatid serves as a template. NHEJ, on the other hand, is a "error-prone" pathway, in which the two termini of the broken DNA molecule are used to form compatible ends that are directly ligated. This review aims to provide a fundamental understanding of how HR and NHEJ pathways operate, cause genome instability, and what kind of genes during the pathways are associated with head and neck cancer.


Assuntos
Humanos , Senilidade Prematura , Morte Celular , Cromátides , DNA , Dano ao DNA , Instabilidade Genômica , Mãos , Cabeça , Neoplasias de Cabeça e Pescoço , Perda de Heterozigosidade , Oxigênio , Radiação Ionizante , Irmãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA