Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Journal of Emergency Medicine ; (12): 637-643, 2023.
Artigo em Chinês | WPRIM | ID: wpr-989834

RESUMO

Objective:To explore the role of thioredoxin interaction protein (TXNIP)/NOD-like receptor protein 3 (NLRP3) pathway in renal interstitial fibrosis induced by renal ischemia-reperfusion injury (IRI) in mice.Methods:Adult male C57BL/6J mice aged 6 to 8 weeks and TXNIP knockout mice with the same genetic background were selected. The wild type mice were divided into the sham operation (Sham) group and renal IRI group. The TXNIP knockout mice were divided into the sham+TXNIP KO group and IRI+TXNIP KO group, with 12 mice in each group. The model of renal ischemia-reperfusion injury was established by clamping bilateral renal pedicles for 45 min and then restoring perfusion. The sham operation model was only dissociated bilateral renal arteries without other treatment. Blood creatinine, urea nitrogen, kidney injury molecule-1 (Kim-1) and neutrophil gelatinase-associated lipocalin (NGAL), blood transforming growth factor-β (TGF-β) and interleukin 6 (IL-6) were measured on the 1st, 7th and 28th days after reperfusion. The renal cortex was taken on the 1st and 28th days for Masson staining, in which the renal tubule-interstitial injury score was obtained. TGF-β and IL-6 mRNA expression were detected by qPCR, TXNIP, NLRP3, Pro-IL-1β, IL-1β and α-SMA protein expression were detected by Western blot, and MDA and SOD levels were detected by ELISA. Homogeneity test of variance was performed before the statistics of normal distribution measurement data, one-way ANOVA was used for the comparison between multiple groups, and LSD- t test was used for the comparison between the two groups. Results:On the 1st, 7th and 28th days after IRI, compared with the sham group, the Scr, BUN, Kim-1, NGAL, TGF-β and IL-6 were increased continuously in the IRI group ( P<0.05). On the 28th day after IRI, large areas of collagen fibers and inflammatory cell infiltration were observed in the renal interstitium of the IRI group. In the IRI group, the scores of renal tubular injury and renal interstitial fibrosis on the 28th day were significantly higher than those on the 1st day (all P<0.05). On the 1st, 7th and 28th days after IRI, compared with the IRI group, the levels of Scr, BUN, Kim-1, NGAL, TGF-β and IL-6 were significantly decreased in the IRI+TXNIP KO group (all P<0.05). On the 1st and 28th days after IRI, compared to the IRI group, the areas of collagen fibers and inflammatory cell infiltration in the renal interstitium of the IRI+TXNIP KO group were decreased. The renal tubule injury score [Day 1, (192.2 ± 62.4) vs. (103.2 ± 49.1); Day 28, (154.3 ± 93.6) vs. (64.3 ± 24.8), both P<0.05] and interstitial fibrosis score [Day 1, (7.3 ± 3.2) vs. (4.8 ± 1.7); Day 28, (12.8 ± 3.9) vs. (2.3 ± 0.8), both P<0.05] were all decreased. The expression of TGF-β, IL-6 mRNA, TXNIP, NLRP3, Pro-IL-1 β, IL-1 β and α-SMA protein in renal cortex were significantly decreased (both P<0.05). In renal cortex, MDA level was decreased and SOD level was increased (all P<0.05). Conclusions:TXNIP/NLRP3 pathway is involved in the development of renal interstitial inflammation and fibrosis after renal ischemia and reperfusion. Knockout or inhibition of TXNIP can inhibit the progression of acute renal injury to chronic renal disease.

2.
Chinese Pharmacological Bulletin ; (12): 512-519, 2023.
Artigo em Chinês | WPRIM | ID: wpr-1013939

RESUMO

Aim To investigate whether notoginsenoside Rl (PNS-R1) alleviates allergic rhinitis (AR) through AMP-activated protein kinase (AMPK)/mitochondrial fission critical protein (DRP1) -mediated mitochondrial fission. Methods Different doses of PNSRl were used to treat ovalbumin (OVA) -induced AR model mice,and the inhibitory effect of PNS-R1 on AR was investigated by observing allergic symptoms such as nasal rubbing and sneezing, as well as HE staining of nasal tissues. Serum IgE levels and nasal lavage fluid (NLF) inflammatory cytokine levels were detected by enzyme-linked immunosorbent assay (ELISA) and apoptosis-related proteins were detected by Western blot. In vitro human nasal epithelial cells (HNEpC) were stimulated with IL-13 to observe apoptosis, mitochondrial membrane potential, cellular ROS and mitochondrial ROS production, as well as the expression levels of AMPK/DRP1, expression levels of the TXNIP/NLRP3 inflammasomes and the translocation of DRP1. Results PNS-R1 attenuated allergic symptoms in AR mice, HE staining reduced inflammatory cells and reduced the levels of OVA-specific IgE in serum, and the levels of IL-4, IL-6, and IL-8 in NLF. PNS-R1 attenuated the apoptosis and ROS production of nasal epithelial cells in AR. In vitro PNS-R1 could up-regulate mitochondrial membrane potential after IL-13 stimulation, reduce ROS and mtROS production, the proportion of apoptotic positive cells, and reduce cleaved caspase-3, Bax, and up-regulate Bcl-2 expression, down-regulate DRP1 phosphorylation (Ser 616) and DRP1 translocation at the mitochondrial membrane in an AMPK-dependent manner, reducing TXNIP/NLRP3 expression. Conclusions PNS-R1 can protect mitochondrial integrity by inhibiting the AMPK/DRP1 signaling axis and its subsequent TXNIP/NLRP3 signaling axis,thereby alleviating rhinitis in AR mice.

3.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 81-89, 2022.
Artigo em Chinês | WPRIM | ID: wpr-943087

RESUMO

ObjectiveTo observe the effect of Dahuang Xiezhuo prescription on the changes in renal pathology and reactive oxygen species (ROS)/thioredoxin-interacting protein (TXNIP)/NOD-like receptor protein 3 (NLRP3) pathway expression in the kidney tissues of rats with 5/6 nephrectomy, and to explore the mechanism of Dahuang Xiezhuo prescription in protecting renal function and delaying renal interstitial fibrosis and the possibility. MethodNinety healthy male SD rats were randomly divided into a sham operation group, a model group, low, medium, and high-dose (6.825, 13.65, 27.30 g·kg-1) Dahuang Xiezhuo prescription groups, and a Niaoduqing granule group (2.60 g·kg-1). Except the sham operation group, 5/6 nephrectomy was used to replicate the rat model of chronic renal failure (CRF). After modeling, each administration group was given the corresponding dose of drug suspension by intragastric administration, once a day for consecutive 8 weeks. After administration, serum creatinine (SCr) and urea nitrogen (BUN) levels and 24 h urinary protein quantification (UTP) levels were detected. Western blot assay was used to detect the protein expressions of thioredoxin (TRX), TXNIP, and NLRP3. The protein expressions of TRX, TXNIP, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), transformation growth factor-β (TGF-β), Collagen Ⅳ, α-smooth muscle actin (α-SMA), and fibronectin (FN) were detected by immunohistochemistry. ResultAs compared with the sham operation group, serum levels of SCr, BUN, and UTP in the model group were increased (P<0.05), TRX, TXNIP, NLRP3, ASC, TGF-β, Collagen Ⅳ, α-SMA, and FN proteins were increased (P<0.01), and renal interstitial fibrosis significantly occurred. As compared with the model group, the levels of SCr, 24 h BUN, and UTP in the low, medium, and high-dose Dahuang Xiezhuo prescription groups and the Niaoduqing granule group were decreased to varying degrees (P<0.05), TRX, TXNIP, NLRP3, ASC, TGF-β, Collagen Ⅳ, α-SMA, and FN were decreased (P<0.01), and renal interstitial fibrosis was improved to varying degrees. ConclusionDahuang Xiezhuo prescription can protect renal function and delay renal interstitial fibrosis in rats with CRF.

4.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 8-16, 2022.
Artigo em Chinês | WPRIM | ID: wpr-942323

RESUMO

ObjectiveTo investigate the effect of Gegen Qinliantang (GGQLT)-medicated serum on free fatty acid (FFA)-induced nonalcoholic steatohepatitis (NASH) in vitro model of human hepatoma cells HepG2. MethodNASH model of HepG2 cells was established in vitro, and the cells were intervened with different volume fractions of GGQLT-medicated serum and resveratrol. Intracellular lipid deposition in each group was detected by oil red O staining, the level of reactive oxygen species (ROS) in each group were detected by flow cytometry, the levels of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), triglyceride (TG) and malondialdehyde (MDA) in each group were detected by kits. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to measure the mRNA expression levels of nuclear transcription factor (NF)E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), quinone oxidoreductase 1 (NQO1), Kelch-like epichlorohydrin-associated protein-1 (Keap1), NF-κB, thioredoxin interacting protein (TXNIP), interleukin-1β (IL-1β) in HepG2 cells of each group. The protein expression of Nrf2, TXNIP in cells of each group was detected by Western blot. ResultFFA induced large accumulation of intracellular lipids. Compared with the normal group, the activities of GSH-Px and SOD were significantly decreased (P<0.01) and the contents of TG, ROS and MDA were significantly increased (P<0.05, P<0.01) in the model group. Compared with the model group, all GGQLT groups and resveratrol group could elevate intracellular SOD activity to different degrees (P<0.05, P<0.01) and significantly reduce the levels of intracellular ROS and MDA (P<0.05, P<0.01), GGQLD high- and medium-dose groups and resveratrol group significantly elevated GSH-Px activity (P<0.01), GGQLD medium- and low-dose groups and resveratrol group significantly decreased TG content (P<0.05, P<0.01). Compared with the model group, GGQLT high- and medium-dose groups and resveratrol group could significantly upregulate the mRNA expression levels of Nrf2, HO-1 and NQO1 (P<0.01), all GGQLT groups and resveratrol group could significantly downregulate the TXNIP protein expression level, as well as significantly downregulate the mRNA expression levels of Keap1, NF-κB (P<0.05, P<0.01). Nrf2-siRNA transfection of cells revealed that Nrf2 expression was significantly downregulated (P<0.01) in the Nrf2-siRNA group of cells by comparing with NC-siRNA group at the corresponding dose of drugs, and the inhibitory effects of GGQLT and resveratrol on TXNIP, IL-1β were attenuated. ConclusionFFA induces the production of ROS and inflammatory factors in HepG2 cells, and GGQLT can improve the anti-inflammatory and antioxidant capacities of cells, and its mechanism may be related to the regulation of Nrf2/TXNIP signaling pathway, so as to improve NASH.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 49-57, 2022.
Artigo em Chinês | WPRIM | ID: wpr-940551

RESUMO

ObjectiveTo observe the effect of Danggui Buxuetang on podocyte pyroptosis in diabetic kidney disease (DKD) rats and to explore the possible mechanism of its prevention and treatment of DKD and podocyte pyroptosis. MethodEight of the 50 male SD rats were randomly classified into a normal group, and the remaining 42 were fed a high-glucose and high-fat diet for six weeks and then intraperitoneally injected with 35 mg·kg-1 streptozotocin (STZ) for inducing type 2 diabetes. After successful modeling, they were randomized into the model group, low- (0.72 g·kg-1) and high-dose (1.44 g·kg-1) Danggui Buxuetang group, and irbesartan (0.017 g·kg-1) group and gavaged with the corresponding drugs, while those in the normal group and model group with an equal volume of normal saline, once per day, for 20 weeks. During the medication, the fasting blood glucose (FBG) and 24 h urine protein (24 h-UTP) were measured regularly. After administration, the pathological changes in renal tissues were observed by periodic acid-silver metheramine (PASM) staining, followed by the observation of ultrastructural changes in podocytes under the transmission electron microscope (TEM). Serum levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18) were determined by enzyme-linked immunosorbent assay (ELISA). The DNA damage in renal tissue cells of rats was detected by in situ nick end-labeling (TUNEL) assay. The protein expression levels of thioredoxin interacting protein (TXNIP), cysteine-dependent aspartate-directed protease-1 (Caspase-1), and gasdermin D (GSDMD) in renal tissues of rats were detected by immunohistochemistry (IHC), the expression levels of nucleotide binding domain like receptor protein 3 (NLRP3) and Wilms tumor protein-1 (WT-1) in podocytes by immunofluorescent (IF) staining, and the expression levels of TXNIP/NLRP3/Caspase-1/GSDMD pathway proteins and Synaptopodin in renal podocytes by Western blot. ResultCompared with the normal group, the model group exhibited increased FBG and 24 h UTP, glomerular hypertrophy, mesangial hyperplasia, increased extracellular matrix, thickened basement membrane, K-W nodules, vacuolar degeneration in renal tubular epithelial cells, foot process fusion or loss, elevated serum IL-1β and IL-18 levels and TUNEL-positive cells in renal tissue, enhanced NLRP3 but diminished WT-1 expression in podocytes, down-regulated Synaptopodin protein expression, and up-regulated TXNIP/NLRP3/Caspase-1/GSDMD protein expression (P<0.01). Compared with the model group, Danggui Buxuetang high-dose group remarkably lowered FBG, 24-h UTP, and TUNEL-positive cells in renal tissue, improved renal histopathology and podocyte injury and loss, down-regulated NLRP3 expression in podocytes and TXNIP/NLRP3/Caspase-1/GSDMD protein expression levels, and up-regulated WT-1 expression in podocytes and Synaptopodin protein expression (P<0.05, P<0.01). ConclusionDanggui Buxuetang inhibits podocyte pyroptosis to reduce proteinuria and delays the development of DKD possibly by regulating the TXNIP/NLRP3/GSDMD signaling pathway.

6.
Chinese Journal of Biochemistry and Molecular Biology ; (12): 885-891, 2022.
Artigo em Chinês | WPRIM | ID: wpr-1015675

RESUMO

Thioredoxin⁃interacting protein (TXNIP), also known as vitamin D3 up⁃regulation protein 1, is named for its ability to bind to thioredoxin (TRX) and inhibit its activity and expression. This article summarizes the discovery and structure of TXNIP, and its effect on the development of prediabetes by regulating the metabolism of glucose and lipid. On this basis, two main pathways of TXNIP participating in the development of diabetes are summarized: TXNIP induces apoptosis of islet cells by antagonizing the anti⁃apoptosis effect of TRX; Over⁃expression of TXNIP promotes the phosphorylation of islet cells and increases the expression of tumor suppressor⁃related protein, which leads to the senescence of islet cells. The role of TXNIP in diabetic complications such as diabetic cardiomyopathy, diabetic diabetic nephropathy and diabetic retinopathy is emphasized. TXNIP can further participate in physiological and biochemical processes such as oxidative stress, autophagy, apoptosis, glucose and lipid metabolism and activation of inflammation through various indirect pathways. Therefore, it is important to understand the mechanism of TXNIP in diabetes mellitus and its complications. Finally, the potential application of TXNIP in diabetes was discussed. Methylation of single TXNIP gene cannot fully reveal the molecular mechanism of diabetes and its complications. In the future, we can study how TXNIP gene interacts with other genes or risk factors, and participates in the occurrence and development of diabetes and its complications. These in⁃depth studies will lay a foundation for the application of target molecules in the diagnosis and treatment of diabetes and its complications.

7.
Chinese Pharmacological Bulletin ; (12): 1823-1830, 2022.
Artigo em Chinês | WPRIM | ID: wpr-1014252

RESUMO

Aim To investigate the protective effect of dexmedetomidine(DEX)on acute myocardial ischemia in rats and its mechanism.Methods Sixty SD rats were randomly divided into five groups: control group(C), model group(M), and dexmedetomidine 10, 25, 50 μg·kg

8.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 21-27, 2021.
Artigo em Chinês | WPRIM | ID: wpr-906295

RESUMO

Objective:To study the protective effect of essential oil from Alpiniae Zerumbet Fructus (EOAZF) against high glucose (HG)-induced injury of human umbilical vein endothelial cells (HUVECs) <italic>in vitro</italic>, so as to provide experimental evidence for the treatment of diabetes-induced cardiovascular diseases with EOAZF. Method:The cells were divided into the normal group, model group (25 mmol·L<sup>-1</sup> glucose), positive control group (100 mg·L<sup>-1</sup> vitamin C), and the low- (0.25 μg·L<sup>-1</sup>), medium- (1 μg·L<sup>-1</sup>), and high-dose (4 μg·L<sup>-1</sup>) EOAZF groups. The HUVECs were damaged by HG. The secretion amounts of malondialdehyde (MDA), nitric oxide (NO), and endothelin-1 (ET-1) in HUVECs of different groups were measured to assess the protective effect of EOAZF against HG-induced injury. The effects of EOAZF on the apoptosis and reactive oxygen species (ROS) generation of HUVECs damaged by HG were detected by Annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining and dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. The protein and mRNA expression levels of thioredoxin interacting protein (TXNIP) and thioredoxin 1 (Trx-1) were determined by Western blot and Real-time polymerase chain reaction (Real-time PCR), followed by the measurement of total intracellular Trx-1 activity with insulin disulfide reduction method. Result:The comparison with the control group revealed that the proliferation of HUVECs in the model group was significantly inhibited and their shape was damaged. Compared with the model group, EOAZF protected HUVECs against HG-induced injury in a concentration-dependent manner. The secretion amounts of MDA and ET-1 (<italic>P</italic><0.05) in the model group were increased in contrast to those in the control group, while the NO level was decreased (<italic>P</italic><0.01). Compared with the model group, EOAZF at all the three concentrations, especially at 4 μg·L<sup>-1</sup>, obviously reduced the secretion of MDA and ET-1 (<italic>P</italic><0.05), but elevated NO after HG induction (<italic>P</italic><0.05). The cell apoptosis assay and ROS detection results demonstrated that the apoptosis and ROS level in the model group were higher than those in the control group (<italic>P</italic><0.01). Compared with the model group, EOAZF at 4 μg·L<sup>-1 </sup>significantly lowered the ROS level and apoptosis (<italic>P</italic><0.05) of HUVECs damaged by HG. The Western blot assay and Trx-1 activity detection uncovered that the protein and mRNA expression levels of TXNIP in the model group were significantly up-regulated as compared with those in the control group (<italic>P</italic><0.05), whereas the Trx-1 activity was decreased (<italic>P</italic><0.01). Compared with the model group, EOAZF at 4 μg·L<sup>-1 </sup>significantly down-regulated the mRNA and protein (<italic>P</italic><0.05) expression levels of TXNIP and enhanced the total Trx-1 activity (<italic>P</italic><0.05) in HUVECs, thus suppressing the oxidative stress. Conclusion:EOAZF exerts the protective effects against HG-induced injury in HUVECs by improving the endothelial function and reducing intracellular ROS and apoptosis. Its efficacy in anti-oxidative stress may be related to the down-regulation of mRNA and protein expression levels of TXNIP and the enhancement of Trx-1 activity.

9.
Chinese Pharmacological Bulletin ; (12): 16-19, 2018.
Artigo em Chinês | WPRIM | ID: wpr-664593

RESUMO

Thioredoxin-interacting protein ( TXNIP) suppresses the antioxidative function of thioredoxin ( Trx ) by combining with thioredoxin ( Trx).Therefore, it promotes the generation and accumulation of reactive oxygen species ( ROS ) , inducing endoplasmic reticulum stress and mitochondrial stress , which leads to cellular inflammation or cellular apoptosis ultimately . TXNIP-mediated oxidative stress plays a crucial role in control-ling the generation and development of some diseases , such as diabetes and its complications ( diabetic nephropathy diabetic retinopathy etc .) , atherosclerosis ischemia/reperfusion injury , cancers ( hepatocellular carcinoma , carcinoma of urinary blad-der, mammary cancer , leukemia ) etc.Here, we try to review the action and mechanism of oxidative stress mediated by TXNIP in the diseases and the progress in research .

10.
São Paulo; s.n; s.n; 2018. 201 p. ilus, tab, graf.
Tese em Português | LILACS | ID: biblio-911604

RESUMO

O diabetes mellitus do tipo 1 (DM1) é uma doença causada pela destruição autoimune das células-ß produtoras de insulina do pâncreas. O transplante de ilhotas pancreáticas é um procedimento tecnicamente simples sendo uma alternativa terapêutica interessante para o DM1. Entretanto, a oferta limitada de pâncreas de doadores falecidos e a necessidade de imunossupressão crônica são fatores que limitam a aplicabilidade dessa modalidade de transplante. Neste trabalho foram estudadas duas estratégias que visam oferecer soluções aos fatores limitantes do transplante de ilhotas pancreáticas. Na primeira parte do trabalho, o mecanismo molecular que dirige o processo de diferenciação de células-tronco embrionárias murinas (murine embryonic stem cells, mESCs) em células produtoras de insulina (insulin producing cells, IPCs) foi analisado visando otimizar o processo de diferenciação. Nós selecionamos o gene Thioredoxin interacting protein (Txnip), diferencialmente expresso ao longo da diferenciação ß-pancreática, para realizar um estudo funcional através da modificação genética de mESCs. Os resultados obtidos permitiram verificar que a inibição de Txnip na diferenciação ß-pancreática pode induzir a diferenciação de IPCs com maior expressão de marcadores de células- e mais responsivas ao estímulo de glicose. Além disso, o modelo de zebrafish permitiu elucidar in vivo o papel de Txnip durante a organogênese pancreática, revelando que a inibição desse gene é capaz de aumentar a massa de células-ß através do estimulo de células presentes no ducto extra-pancreático. Dessa forma, a inibição de Txnip pode aprimorar os protocolos para obtenção de IPCs a partir de células-tronco pluripotentes. A exposição crônica a agentes imunossupressores diabetogênicos e a perda de componentes de matriz extracelular durante o isolamento de ilhotas pancreáticas são causas para a perda de funcionalidade do enxerto. Dessa forma, na segunda parte do trabalho, um biomaterial inovador foi desenvolvido, contendo um polímero de laminina (polilaminina, PLn) para o encapsulamento e a imunoproteção de ilhotas pancreáticas. As cápsulas produzidas com o biomaterial desenvolvido, Bioprotect-Pln, são térmica- e mecanicamente estáveis, além de serem biocompatíveis e capazes de imunoproteger ilhotas pancreáticas humanas in vitro. O encapsulamento com Bioprotect-Pln preserva a funcionalidade de ilhotas pancreáticas. Além disso, quando cápsulas vazias de Bioprotect-Pln foram implantadas em camundongos imunocompetentes, houve atenuação da resposta inflamatória ao implante, uma das principais causas para perda de funcionalidade de enxertos encapsulados. Os resultados obtidos indicam que a presença de polilaminina na malha capsular induz uma resposta anti-inflamatória que pode beneficiar a preservação do enxerto de ilhotas pancreáticas encapsuladas. Atualmente, o transplante de ilhotas pancreáticas é visto como a terapia celular mais promissora para atingir a independência de insulina em pacientes de DM1, porém, a aplicabilidade desse transplante ainda é limitada. Este trabalho contribuiu para a elucidação dos mecanismos moleculares que podem aprimorar o processo de diferenciação de célulastronco pluripotentes em IPCs, estabelecendo uma fonte alternativa de células para a terapiade reposição, e, também, estabeleceu um biomaterial inovador, capaz de diminuir a resposta inflamatória ao implante de microcápsulas e de imunoproteger células microencapsuladas. Desta forma, este trabalho contribui para o estabelecimento da terapia de reposição celular para pacientes de DM1


Type 1 diabetes mellitus (DM1) is a disease caused by the autoimmune destruction of insulin-producing pancreatic ß-cells. Pancreatic islet transplantation is a technically simple procedure and an interesting alternative therapy for DM1, however, the limited supply of cadaveric donated pancreas and the need of life-long immunosuppression are factors which limit its applicability. In the present work, two strategies were employed aiming at establishing viable solutions for the factors limiting pancreatic islet transplantation. In the first part of this study, the molecular mechanism which drives differentiation of murine embryonic stem cells (mESCs) into insulin producing cells (IPCs) was analyzed in order to optimize the differentiation process. The Thioredoxin interacting protein (Txnip) gene, which is differentially expressed along -pancreatic differentiation, was selected to undergo a functional analysis by genetically modifying mESCs. The results allowed us to verify that Txnip inhibition during the ß-pancreatic differentiation process can induce differentiation of IPCs displaying higher expression of ß-cell markers and being more responsive to glucose stimuli. In addition, the zebrafish model allowed us to elucidate in vivo the role of Txnip during pancreatic organogenesis, revealing that its inhibition is able to increase the mass of ß-cells through stimulation of extra-pancreatic ductal cells. Therefore, Txnip inhibition may turbinate IPCs differentiation from pluripotent stem cells. The chronic exposure to diabetogenic immunosuppressive agents and the loss of extracellular matrix components during isolation of pancreatic islets are probable causes for the loss of pancreatic islet graft functionality. Therefore, in the second part of this study, an innovative biomaterial was developed by incorporating a laminin polymer (polylaminin, PLn) for the encapsulation and immunoprotection of pancreatic islets. The capsules produced with the novel biomaterial, Bioprotect-Pln, are biocompatible, thermally and mechanically stable and are able to immunoprotect human pancreatic islets in vitro. Encapsulation with Bioprotect-Pln preserves the functionality of pancreatic islets. In addition, when empty Bioprotect-Pln capsules were implanted into immunocompetent mice, an attenuation of the inflammatory response to the implant occurred, this being one of the main causes of encapsulated graft loss. The results indicate that polylaminin addition to the capsular mesh induces an anti-inflammatory response which may favor preservation of the engrafted encapsulated pancreatic islets. Pancreatic islet transplantation is currently seen as the most promising cell therapy to achieve insulin independence in DM1 patients, however, the applicability of this transplant is still limited. This work contributed to the elucidation of the molecular mechanisms which can turbinate the differentiation of pluripotent stem cells into IPCs, establishing an alternative source of cells for the replacement therapy, and, also, established an innovative biomaterial which is able to decrease the inflammatory response to the graft, thereby immunoprotecting the microencapsulated cells. Therefore, this work contributes to the establishment of the cell replacement therapy for DM1 patients


Assuntos
Terapias Complementares , Células-Tronco Embrionárias Murinas , Diabetes Autoimune Latente em Adultos/tratamento farmacológico , Transplante das Ilhotas Pancreáticas , Laminina , Células Secretoras de Insulina
11.
Chinese Journal of Diabetes ; (12): 344-350, 2017.
Artigo em Chinês | WPRIM | ID: wpr-512915

RESUMO

Objective To measure the expressions of TXNIP,STAMP2 and GATA3 in diabetes patients with breast cancer and to determine the changes of oxidative stress indexes before and after surgery.Methods The expression levels of TXNIP,STAMP2 and GATA3 mRNA in cancer tissues and adjacent normal tissues were measured in 45 diabetes patients with breast cancer.The levels of serum oxidative stress indexes including MDA,MPO,SOD and TAC were detected and compared before and after surgery.Results The expressions of TXNIP,STAMP2 and GATA3 mRNA and their protein levels in cancer tissues were lower than those in adjacent normal tissues (P<0.05).The positive expression rate of the three indexes were 60%,66.7% and 73.3%,higher than that of TXNIP protein with 2.2% in the adjacent normal tissues(P<0.05).The TXNIP,STAMP2 and GATA3 protein positive rate of breast cancer tissue were related to differentiation,lymph node metastasis and clinical grades (P<0.05).Serum MDA and MPO levels increased first and then decreased.SOD and TAC showed a trend of decrease first and then increase.The turning point is 6 d after surgery.Conclusion TXNIP,STAMP2,GATA3 and serum oxidative stress indicators may be the indicators for diagnosis and treatment of breast cancer in diabetes patients.

12.
Basic & Clinical Medicine ; (12): 1668-1673, 2017.
Artigo em Chinês | WPRIM | ID: wpr-669136

RESUMO

Objective To observe the effect of tumor necrosis factor-α( TNF-α) on islet cell apoptosis and TXNIP expression.Methods INS-1 cells were cultured in vitro, treating with TNF-α(0, 1, 5, 10 and 20 mg/L).We tested the effect of TNF-αon cell viability by CCK-8.INS-1 cells were treated with TNF-α( 5 mg/L, 24 h) for the proper concentration and incubation time; mRNA expression of TXNIP and ChREBP were measured by real-time PCR;in addition, protein levels of TXNIP , ChREBP and FOXO1 were analyzed by Western blot .Results TNF-αdecreased the survival rate of INS-1 cells in a dose-dependent manner ( P<0.05 ) , and induced apoptosis;protein and mRNA expression of TXNIP and ChREBP were significantly higher than that in control group ( P<0.05 );while the expression of protein level of FOXO 1 was down-regulated .Conclusions TNF-αinduces apoptosis in INS-1 cells and aggravates the cells damage .

13.
Chinese Journal of Comparative Medicine ; (6): 9-13, 2015.
Artigo em Chinês | WPRIM | ID: wpr-467279

RESUMO

Objective To knockout the murine Txnip gene using microinjection of transcription activator-like effector nuclease ( TALEN) mRNAs.Methods TALEN knockout site recognizing Txnip was designed by tools on line, then constructed the vectors and assayed its cleavage activity at cellular level.TALEN mRNA was transcribed in vitro and microinjected into C57BL/6J mouse zygotes.F0 mice were verified at DNA level with BamHI and TXNIP-knockout mice were obtained.Results We designed and constructed TALENs which recognized and cut the first exon of Txnip, and got four TXNIP knockout mice, among which two were frameshift mutation, demonstrating that the TXNIP-knockout mice were generated by TALEN technique.Conclusions Microinjection of in vitro transcribed TALEN mRNAs into murine zygotes is a highly effective and convenient way to develop TXNIP-knockout mouse model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA