Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Acta Pharmaceutica Sinica ; (12): 593-603, 2021.
Artigo em Chinês | WPRIM | ID: wpr-873771

RESUMO

The therapeutic effect of tumor photodynamic therapy is severely limited by the hypoxic tumor microenvironment. Inhibiting tumor celloxygen consumption is a more effective way than increasing its oxygen supply to overcome the tumor hypoxia and enhance photodynamic therapy. To carry out this strategy, the supramolecular nanoparticles VER-ATO-SMN loaded with photosensitizer verteporfin (VER), oxygen-consuming inhibitor atovaquone (ATO), and stabilizer polyvinylpyrrolidone (PVP)-K30 were prepared by the nanoprecipitation method, and the optimal prescription was screened and optimized by single factor experiments. The results showed that the optimal prescription for VER-ATO-SMN was ATO∶VER (w/w) = 1∶1, PVP-K30 = 100 mg, N,N-dimethylformamide∶water (v/v) = 1∶10. The morphology, particle size, particle dispersion index and encapsulation efficiency of supramolecular nanoparticles were characterized. The VER-ATO-SMN showed a spherical morphology and was well dispersed. The hydrodynamic size of VER-ATO-SMN was 101.21 ± 4.30 nm as determined by dynamic light scattering (DLS). The encapsulation efficiencies of VER and ATO in VER-ATO-SMN prepared with the optimal prescription were 70.86% and 77.52%, respectively. The VER-ATO-SMN exhibited good laser stability and also showed high stability in conditions which simulated the physiological solution. Compared with free VER and VER liposome, VER-ATO-SMN performed enhanced therapeutic effect at the cell level. The mechanism was that VER-ATO-SMN could effectively incorporate into cells and improving the intracellular oxygen concentration by reducing the oxygen consumption of tumor cells could increase the amount of reactive oxygen species generated by VER mediated photodynamic therapy. The in vivo anticancer efficacy results of tumor-bearing mice suggested that VER-ATO-SMN could effectively inhibit the tumor growth or even completely eliminate the tumor. All animal experiments were performed in line with national regulations and approved by the Animal Experiments Ethical Committee of 900 Hospital of the Joint Logistics Team.

2.
Protein & Cell ; (12): 318-338, 2020.
Artigo em Inglês | WPRIM | ID: wpr-828781

RESUMO

Respirasome, as a vital part of the oxidative phosphorylation system, undertakes the task of transferring electrons from the electron donors to oxygen and produces a proton concentration gradient across the inner mitochondrial membrane through the coupled translocation of protons. Copious research has been carried out on this lynchpin of respiration. From the discovery of individual respiratory complexes to the report of the high-resolution structure of mammalian respiratory supercomplex IIIIIV, scientists have gradually uncovered the mysterious veil of the electron transport chain (ETC). With the discovery of the mammalian respiratory mega complex IIIIIV, a new perspective emerges in the research field of the ETC. Behind these advances glitters the light of the revolution in both theory and technology. Here, we give a short review about how scientists 'see' the structure and the mechanism of respirasome from the macroscopic scale to the atomic scale during the past decades.

3.
Protein & Cell ; (12): 318-338, 2020.
Artigo em Inglês | WPRIM | ID: wpr-828617

RESUMO

Respirasome, as a vital part of the oxidative phosphorylation system, undertakes the task of transferring electrons from the electron donors to oxygen and produces a proton concentration gradient across the inner mitochondrial membrane through the coupled translocation of protons. Copious research has been carried out on this lynchpin of respiration. From the discovery of individual respiratory complexes to the report of the high-resolution structure of mammalian respiratory supercomplex IIIIIV, scientists have gradually uncovered the mysterious veil of the electron transport chain (ETC). With the discovery of the mammalian respiratory mega complex IIIIIV, a new perspective emerges in the research field of the ETC. Behind these advances glitters the light of the revolution in both theory and technology. Here, we give a short review about how scientists 'see' the structure and the mechanism of respirasome from the macroscopic scale to the atomic scale during the past decades.

4.
Protein & Cell ; (12): 854-865, 2016.
Artigo em Inglês | WPRIM | ID: wpr-757378

RESUMO

Respirasome, a huge molecular machine that carries out cellular respiration, has gained growing attention since its discovery, because respiration is the most indispensable biological process in almost all living creatures. The concept of respirasome has renewed our understanding of the respiratory chain organization, and most recently, the structure of respirasome solved by Yang's group from Tsinghua University (Gu et al. Nature 237(7622):639-643, 2016) firstly presented the detailed interactions within this huge molecular machine, and provided important information for drug design and screening. However, the study of cellular respiration went through a long history. Here, we briefly showed the detoured history of respiratory chain investigation, and then described the amazing structure of respirasome.


Assuntos
Animais , Humanos , Transporte de Elétrons , Fisiologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons , Química , História , Metabolismo , História do Século XX , História do Século XXI , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA