Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros








Intervalo de ano
1.
Artigo | IMSEAR | ID: sea-223540

RESUMO

Background & objectives: Striatin is a multi-domain scaffolding protein essential for activating endothelial nitric oxide synthase (eNOS). However, its role in pre-eclampsia remains use explored. Hence, this study aimed to investigate the association between striatin and eNOS in regulating nitric oxide (NO) production in the placenta of women with and without pre-eclampsia. Methods: Forty pregnant women each without (controls) and with pre-eclampsia (cases) were enrolled in the study. Blood striatin and NO concentrations were detected by the ELISA. Protein expression of striatin, phosphorylated eNOS (peNOS), inducible NOS (iNOS) and phosphorylated NF-?B were measured in the placental tissues by Western blot. Twenty four hour urinary protein and serum urea, uric acid and creatinine were analyzed as an autoanalyzer. Placental histology was analyzed by haematoxylin and eosin staining. Results: Compared to normotensive pregnant women, the levels of serum NO and striatin were decreased in pre-eclamptic women. The protein expression of striatin and peNOS was significantly reduced (P<0.05) while p65NF-?B and iNOS were upregulated considerably (P<0.05) in the placenta of cases compared to controls. Interpretation & conclusions: Our results show for the first time that decreased striatin expression was associated with decreased peNOS protein expression in the placental tissue of pre-eclamptic women. Interestingly, no significant difference was found in blood striatin or NO levels between controls and cases. Thus, therapies that improve placental striatin expression are attractive possibilities, both for prevention as well as treatment of endothelial dysfunction in pre-eclampsia.

2.
Endocrinology and Metabolism ; : 291-301, 2019.
Artigo em Inglês | WPRIM | ID: wpr-763711

RESUMO

BACKGROUND: Striatin and caveolin-1 (cav-1) are scaffolding/regulating proteins that are associated with salt-sensitive high blood pressure and promote renal sodium and water reabsorption, respectively. The mineralocorticoid receptor (MR) interacts with striatin and cav-1, while aldosterone increases striatin and cav-1 levels. However, no in vivo data have been reported for the levels of these proteins in the kidney. METHODS: Male Wistar rats were intraperitoneally injected with normal saline solution, aldosterone alone (Aldo: 150 µg/kg body weight), or aldosterone after pretreatment with eplerenone, an MR blocker, 30 minutes before the aldosterone injection (eplerenone [Ep.]+Aldo). Thirty minutes after the aldosterone injection, the amount and localization of striatin and cav-1 were determined by Western blot analysis and immunohistochemistry, respectively. RESULTS: Aldosterone increased striatin levels by 150% (P<0.05), and cav-1 levels by 200% (P<0.001). Eplerenone had no significant effect on striatin levels, but partially blocked the aldosterone-induced increase in cav-1 levels. Aldosterone stimulated striatin and cav-1 immunoreactivity in both the cortex and medulla. Eplerenone reduced cav-1 immunostaining in both areas; however, striatin intensity was reduced in the cortex, but increased in the medulla. CONCLUSION: This is the first in vivo study demonstrating that aldosterone rapidly enhances renal levels of striatin and cav-1. Aldosterone increases striatin levels via an MR-independent pathway, whereas cav-1 is partially regulated through MR.


Assuntos
Animais , Humanos , Masculino , Ratos , Aldosterona , Western Blotting , Caveolina 1 , Hipertensão , Imuno-Histoquímica , Rim , Ratos Wistar , Receptores de Mineralocorticoides , Sódio , Cloreto de Sódio , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA