Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Adicionar filtros








Intervalo de ano
1.
Korean Journal of Ophthalmology ; : 170-176, 2014.
Artigo em Inglês | WPRIM | ID: wpr-147473

RESUMO

PURPOSE: To investigate the effect of macrophage migration inhibitory factor (MIF) on corneal sensitivity after laser in situ keratomileusis (LASIK) surgery. METHODS: New Zealand white rabbits were used in this study. A hinged corneal flap (160-microm thick) was created with a microkeratome, and -3.0 diopter excimer laser ablation was performed. Expressions of MIF mRNA in the corneal epithelial cells and surrounding inflammatory cells were analyzed using reverse transcription polymerase chain reaction at 48 hours after LASIK. After LASIK surgery, the rabbits were topically given either 1) a balanced salt solution (BSS), 2) MIF (100 ng/mL) alone, or 3) a combination of nerve growth factor (NGF, 100 ug/mL), neurotrophine-3 (NT-3, 100 ng/mL), interleukin-6 (IL-6, 5 ng/mL), and leukemia inhibitory factor (LIF, 5 ng/mL) four times a day for three days. Preoperative and postoperative corneal sensitivity at two weeks and at 10 weeks were assessed using the Cochet-Bonnet esthesiometer. RESULTS: Expression of MIF mRNA was 2.5-fold upregulated in the corneal epithelium and 1.5-fold upregulated in the surrounding inflammatory cells as compared with the control eyes. Preoperative baseline corneal sensitivity was 40.56 +/- 2.36 mm. At two weeks after LASIK, corneal sensitivity was 9.17 +/- 5.57 mm in the BSS treated group, 21.92 +/- 2.44 mm in the MIF treated group, and 22.42 +/- 1.59 mm in the neuronal growth factors-treated group (MIF vs. BSS, p < 0.0001; neuronal growth factors vs. BSS, p < 0.0001; MIF vs. neuronal growth factors, p = 0.815). At 10 weeks after LASIK, corneal sensitivity was 15.00 +/- 9.65, 35.00 +/- 5.48, and 29.58 +/- 4.31 mm respectively (MIF vs. BSS, p = 0.0001; neuronal growth factors vs. BSS, p = 0.002; MIF vs. neuronal growth factors, p = 0.192). Treatment with MIF alone could achieve as much of an effect on recovery of corneal sensation as treatment with combination of NGF, NT-3, IL-6, and LIF. CONCLUSIONS: Topically administered MIF plays a significant role in the early recovery of corneal sensitivity after LASIK in the experimental animal model.


Assuntos
Animais , Feminino , Humanos , Coelhos , Epitélio Corneano/efeitos dos fármacos , Interleucina-6/farmacologia , Ceratomileuse Assistida por Excimer Laser In Situ/métodos , Fator Inibidor de Leucemia/farmacologia , Fatores Inibidores da Migração de Macrófagos/genética , Modelos Animais , Fator de Crescimento Neural/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Neurotrofina 3/farmacologia , RNA Mensageiro/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Sensação/efeitos dos fármacos
2.
Experimental & Molecular Medicine ; : e16-2013.
Artigo em Inglês | WPRIM | ID: wpr-165480

RESUMO

Neurite outgrowth, a cell differentiation process involving membrane morphological changes, is critical for neuronal network and development. The membrane lipid, phosphatidylinositol (PI) 4,5-bisphosphate (PIP2), is a key regulator of many important cell surface events of membrane signaling, trafficking and dynamics. This lipid is produced mainly by the type I PI 4-phosphate 5-kinase (PIP5K) family members. In this study, we addressed whether PIP5Kalpha, an isoform of PIP5K, could have a role in neurite outgrowth induced by nerve growth factor (NGF). For this purpose, we knocked down PIP5Kalpha in PC12 rat pheochromocytoma cells by stable expression of PIP5Kalpha microRNA that significantly reduced PIP5Kalpha expression and PIP2 level. Interestingly, NGF-induced neurite outgrowth was more prominent in PIP5Kalpha-knockdown (KD) cells than in control cells. Conversely, add-back of PIP5Kalpha into PIP5Kalpha KD cells abrogated the effect of NGF on neurite outgrowth. NGF treatment activated PI 3-kinase (PI3K)/Akt pathway, which seemed to be associated with reactive oxygen species generation. Similar to the changes in neurite outgrowth, the PI3K/Akt activation by NGF was potentiated by PIP5Kalpha KD, but was attenuated by the reintroduction of PIP5Kalpha. Moreover, exogenously applied PIP2 to PIP5Kalpha KD cells also suppressed Akt activation by NGF. Together, our results suggest that PIP5Kalpha acts as a negative regulator of NGF-induced neurite outgrowth by inhibiting PI3K/Akt signaling pathway in PC12 cells.


Assuntos
Animais , Camundongos , Ratos , Ativação Enzimática/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Fator de Crescimento Neural/farmacologia , Neuritos/efeitos dos fármacos , Células PC12 , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosforilação/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 235-8, 2009.
Artigo em Inglês | WPRIM | ID: wpr-635139

RESUMO

This study established superparamagnetic iron oxide (SPIO)-labeled nerve growth factor-beta (NGF-beta) gene-modified spinal cord-derived neural stem cells (NSCs). The E14 rat embryonic spinal cord-derived NSCs were isolated and cultured. The cells of the third passage were transfected with plasmid pcDNA3-hNGFbeta by using FuGENE HD transfection reagent. The expression of NGF-beta was measured by immunocytochemistry and Western blotting. The positive clones were selected, allowed to proliferate and then labeled with SPIO, which was mediated by FuGENE HD transfection reagent. Prussian blue staining and transmission electron microscopy (TEM) were used to identify the SPIO particles in the cells. The distinctive markers for stem cells (nestin), neuron (beta-III-tubulin), oligodendrocyte (CNPase) and astrocyte (GFAP) were employed to evaluate the differentiation ability of the labeled cells. The immunocytochemistry and western blotting showed that NGF-beta was expressed in spinal cord-derived NSCs. Prussian blue staining indicated that numerous blue-stained particles appeared in the cytoplasma of the labeled cells. TEM showed that SPIO particles were found in vacuolar structures of different sizes and the cytoplasma. The immunocytochemistry demonstrated that the labeled cells were nestin-positive. After differentiation, the cells expressed beta-III-tubulin, CNPase and GFAP. It was concluded that the SPIO-labeled NGF-beta gene-modified spinal cord-derived NSC were successfully established, which are multipotent and capable of self-renewal.


Assuntos
Células Cultivadas , Dextranos , Embrião de Mamíferos , Imageamento por Ressonância Magnética , Magnetismo , Nanopartículas de Magnetita , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/farmacologia , Células-Tronco Neurais/citologia , Medula Espinal/citologia , Transfecção
4.
Experimental & Molecular Medicine ; : 265-272, 2006.
Artigo em Inglês | WPRIM | ID: wpr-96564

RESUMO

Phosphoinositide-specific phospholipase C-gamma1 (PLC-gamma1) has two pleckstrin homology (PH) domains: an amino-terminal domain (PH1) and a split PH domain (PH2). Here, we show that overlay assay of bovine brain tubulin pool with glutathione-S-transferase (GST)-PLC-gamma1 PH domain fusion proteins, followed by matrix-assisted laser-desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), identified 68-kDa neurofilament light chain (NF-L) as a binding protein of amino-terminal PH domain of PLC-gamma1. NF-L is known as a component of neuronal intermediate filaments, which are responsible for supporting the structure of myelinated axons in neuron. PLC-gamma1 and NF-L colocalized in the neurite in PC12 cells upon nerve growth factor stimulation. In vitro binding assay and immunoprecipitation analysis also showed a specific interaction of both proteins in differentiated PC12 cells. The phosphatidylinositol 4, 5-bisphosphate [PI(4,5)P2] hydrolyzing activity of PLC-gamma1 was slightly decreased in the presence of purified NF-L in vitro, suggesting that NF-L inhibits PLC-gamma1. Our results suggest that PLC-gamma1-associated NF-L sequesters the phospholipid from the PH domain of PLC-gamma1.


Assuntos
Ratos , Animais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Mapeamento de Interação de Proteínas , Biossíntese de Proteínas/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Fosfoproteínas/química , Fosfolipase C gama/antagonistas & inibidores , Fosfatidilinositol 4,5-Difosfato/metabolismo , Peptídeos/química , Células PC12 , Proteínas de Neurofilamentos/química , Fator de Crescimento Neural/farmacologia , Peso Molecular , Dados de Sequência Molecular , Microtúbulos/metabolismo , Microscopia de Fluorescência , Isoenzimas/metabolismo , Glutationa Transferase/metabolismo , Far-Western Blotting , Proteínas Sanguíneas/química , Sítios de Ligação , Sequência de Aminoácidos
5.
Braz. j. med. biol. res ; 38(1): 55-58, Jan. 2005. graf
Artigo em Inglês | LILACS | ID: lil-405546

RESUMO

We studied the effects of infusion of nerve growth factor (NGF) into the hippocampus and entorhinal cortex of male Wistar rats (250-300 g, N = 11-13 per group) on inhibitory avoidance retention. In order to evaluate the modulation of entorhinal and hippocampal NGF in short- and long-term memory, animals were implanted with cannulae in the CA1 area of the dorsal hippocampus or entorhinal cortex and trained in one-trial step-down inhibitory avoidance (foot shock, 0.4 mA). Retention tests were carried out 1.5 h or 24 h after training to measure short- and long-term memory, respectively. Immediately after training, rats received 5 æl NGF (0.05, 0.5 or 5.0 ng) or saline per side into the CA1 area and entorhinal cortex. The correct position of the cannulae was confirmed by histological analysis. The highest dose of NGF (5.0 ng) into the hippocampus blocked short-term memory (P < 0.05), whereas the doses of 0.5 (P < 0.05) and 5.0 ng (P < 0.01) NGF enhanced long-term memory. NGF administration into the entorhinal cortex improved long-term memory at the dose of 5.0 ng (P < 0.05) and did not alter short-term memory. Taken as a whole, our results suggest a differential modulation by entorhinal and hippocampal NGF of short- and long-term memory.


Assuntos
Animais , Masculino , Ratos , Córtex Entorrinal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Memória de Curto Prazo/efeitos dos fármacos , Memória de Curto Prazo/fisiologia , Memória/fisiologia , Ratos Wistar , Retenção Psicológica/efeitos dos fármacos
6.
Journal of Huazhong University of Science and Technology (Medical Sciences) ; (6): 575-7, 2005.
Artigo em Inglês | WPRIM | ID: wpr-634884

RESUMO

In order to investigate the effect of nerve growth factor (NGF) on the proliferation of rabbit corneal endothelial cells and epithelial cells, the in vitro cultured rabbit corneal endothelial cells and epithelial cells were treated with different concentrations of NGF. MTT assay was used to examine the clonal growth and proliferation of the cells by determining the absorbency values at 570 nm. The results showed that NGF with three concentrations ranging from 5 U/mL to 500 U/mL enhanced the proliferation of rabbit corneal endothelial cells in a concentration-dependent manner. 50 U/mL and 500 U/mL NGF got more increase of proliferation than that of 5 U/mL NGF did. Meanwhile, 50 U/mL and 500 U/mL NGF could promote the proliferation of the rabbit corneal epithelial cells significantly in a concentration-dependent manner. However, 5 U/mL NGF did not enhance the proliferation of epithelial cells. It was suggested that exogenous NGF can stimulate the proliferation of both rabbit corneal endothelial and epithelial cells, but the extent of modulation is different.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Endotélio Corneano/citologia , Epitélio Corneano/citologia , Fator de Crescimento Neural/farmacologia
7.
Experimental & Molecular Medicine ; : 130-134, 2004.
Artigo em Inglês | WPRIM | ID: wpr-37856

RESUMO

Apoptosis, the cell's intrinsic death program, plays a crucial role in the regulation of tissue homeostasis, and abnormal inhibition of apoptosis is an indicator of cancer and autoimmune diseases, whereas excessive cell death is implicated in neurodegenerative disorders such as Alzheimer's disease (AD). Using cDNA subtraction analysis, we compared p60TRP (p60 transcription regulator protein) expressing cells with control cells during the process of apoptosis and we identified the new zinc-finger protein p48ZnF that is predominantly located in the cytoplasm of the cell. Additionally, we demonstrate here that p48ZnF is up-regulated in rat neuronal PC12 cells upon stimulation with the neurotrophic factor NGF (50 ng/ml). These findings point to a possible pivotal role of p48ZnF in the control of neuronal survival.


Assuntos
Animais , Ratos , Doença de Alzheimer/genética , Apoptose , Doenças Autoimunes/genética , Sequência de Bases , Biomarcadores , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Clonagem Molecular , Citoplasma/metabolismo , Proteínas de Ligação a DNA/biossíntese , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Cricetinae , Dados de Sequência Molecular , Neoplasias/metabolismo , Fator de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/biossíntese , Células PC12 , RNA Mensageiro/biossíntese , Fatores de Transcrição/biossíntese , Transfecção , Dedos de Zinco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA