Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Adicionar filtros








Intervalo de ano
1.
Neuroscience Bulletin ; (6): 1375-1395, 2023.
Artigo em Inglês | WPRIM | ID: wpr-1010611

RESUMO

Ischemic stroke is a major public health problem worldwide. Although the circadian clock is involved in the process of ischemic stroke, the exact mechanism of the circadian clock in regulating angiogenesis after cerebral infarction remains unclear. In the present study, we determined that environmental circadian disruption (ECD) increased the stroke severity and impaired angiogenesis in the rat middle cerebral artery occlusion model, by measuring the infarct volume, neurological tests, and angiogenesis-related protein. We further report that Bmal1 plays an irreplaceable role in angiogenesis. Overexpression of Bmal1 promoted tube-forming, migration, and wound healing, and upregulated the vascular endothelial growth factor (VEGF) and Notch pathway protein levels. This promoting effect was reversed by the Notch pathway inhibitor DAPT, according to the results of angiogenesis capacity and VEGF pathway protein level. In conclusion, our study reveals the intervention of ECD in angiogenesis in ischemic stroke and further identifies the exact mechanism by which Bmal1 regulates angiogenesis through the VEGF-Notch1 pathway.


Assuntos
Ratos , Animais , Fator A de Crescimento do Endotélio Vascular/farmacologia , Isquemia Encefálica/metabolismo , AVC Isquêmico , Transdução de Sinais , Fatores de Transcrição ARNTL/farmacologia , Neovascularização Fisiológica/fisiologia
2.
Environmental Health and Preventive Medicine ; : 103-103, 2021.
Artigo em Inglês | WPRIM | ID: wpr-922197

RESUMO

BACKGROUND@#Exposure to the ionizing radiation (IR) encountered outside the magnetic field of the Earth poses a persistent threat to the reproductive functions of astronauts. The potential effects of space IR on the circadian rhythms of male reproductive functions have not been well characterized so far.@*METHODS@#Here, we investigated the circadian effects of IR exposure (3 Gy X-rays) on reproductive functional markers in mouse testicular tissue and epididymis at regular intervals over a 24-h day. For each animal, epididymis was tested for sperm motility, and the testis tissue was used for daily sperm production (DSP), testosterone levels, and activities of testicular enzymes (glucose-6-phosphate dehydrogenase (G6PDH), sorbitol dehydrogenase (SDH), lactic dehydrogenase (LDH), and acid phosphatase (ACP)), and the clock genes mRNA expression such as Clock, Bmal1, Ror-α, Ror-β, or Ror-γ.@*RESULTS@#Mice exposed to IR exhibited a disruption in circadian rhythms of reproductive markers, as indicated by decreased sperm motility, increased daily sperm production (DSP), and reduced activities of testis enzymes such as G6PDH, SDH, LDH, and ACP. Moreover, IR exposure also decreased mRNA expression of five clock genes (Clock, Bmal1, Ror-α, Ror-β, or Ror-γ) in testis, with alteration in the rhythm parameters.@*CONCLUSION@#These findings suggested potential health effects of IR exposure on reproductive functions of male astronauts, in terms of both the daily overall level as well as the circadian rhythmicity.


Assuntos
Animais , Masculino , Camundongos , Fatores de Transcrição ARNTL/genética , Fosfatase Ácida , Proteínas CLOCK/genética , Ritmo Circadiano/efeitos da radiação , Epididimo/efeitos da radiação , Expressão Gênica/efeitos da radiação , Genitália Masculina/efeitos da radiação , Glucosefosfato Desidrogenase , L-Iditol 2-Desidrogenase , L-Lactato Desidrogenase , Camundongos Endogâmicos C57BL , Modelos Animais , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , RNA Mensageiro/genética , Exposição à Radiação , Radiação Ionizante , Fenômenos Reprodutivos Fisiológicos/efeitos da radiação , Motilidade dos Espermatozoides/efeitos da radiação , Espermatozoides/efeitos da radiação , Testículo/efeitos da radiação
3.
West China Journal of Stomatology ; (6): 312-316, 2016.
Artigo em Chinês | WPRIM | ID: wpr-309131

RESUMO

Periodontitis is a chronic infective disease characterized as the destruction of the supporting tissues of the teeth. Bone marrow mesenchymal stem cells, which are ideal adult stem cells for the regeneration of supporting tissues, may play important roles in restoring the structure and function of the periodontium and in promoting the treatment of periodontal disease. As a consequence, the characteristics, especially osteogenic differentiation mechanism, of these stem cells have been extensively investigated. The regulation of the physiological behavior of these stem cells is associated with BMAL1 gene. This gene is a potential treatment target for periodontal disease, although the specific mechanism remains inconclusive. This study aimed to describe the characteristics of BMAL1 gene and its ability to regulate the osteogenic differentiation of stem cells.


Assuntos
Adulto , Humanos , Fatores de Transcrição ARNTL , Genética , Células-Tronco Adultas , Células da Medula Óssea , Fisiologia , Diferenciação Celular , Células-Tronco Hematopoéticas , Células-Tronco Mesenquimais , Fisiologia , Osteogênese , Fisiologia , Ligamento Periodontal , Periodontite , Periodonto , Regeneração , Dente
4.
Chinese Journal of Contemporary Pediatrics ; (12): 62-66, 2013.
Artigo em Chinês | WPRIM | ID: wpr-236873

RESUMO

<p><b>OBJECTIVE</b>To study the effects of biological clock protein on circadian disorders in hypoxic-ischemic brain damage (HIBD) by examining levels of CLOCK and BMAL1 proteins in the pineal gland of neonatal rats.</p><p><b>METHODS</b>Seventy-two 7-day-old Sprague-Dawley (SD) rats were randomly divided into sham-operated and HIBD groups. HIBD model was prepared according to the modified Levine method. Western blot analysis was used to measure the levels of CLOCK and BMAL1 in the pineal gland at 0, 2, 12, 24, 36 and 48 hours after operation.</p><p><b>RESULTS</b>Both CLOCK and BMAL levels in the pineal gland increased significantly 48 hours after HIBD compared with the sham-operated group (P<0.05). There were no significant differences in levels of CLOCK and BMAL proteins between the two groups at 0, 2, 12, 24 and 36 hours after operation (P>0.05).</p><p><b>CONCLUSIONS</b>Levels of CLOCK and BMAL1 proteins in the pineal gland of rats increase significantly 48 hours after HIBD, suggesting that both CLOCK and BMAL1 may be involved the regulatory mechanism of circadian disorders in rats with HIBD.</p>


Assuntos
Animais , Feminino , Masculino , Ratos , Fatores de Transcrição ARNTL , Fisiologia , Animais Recém-Nascidos , Proteínas CLOCK , Fisiologia , Transtornos Cronobiológicos , Hipóxia-Isquemia Encefálica , Metabolismo , Glândula Pineal , Química , Ratos Sprague-Dawley , Fatores de Tempo
5.
Braz. j. med. biol. res ; 45(8): 730-736, Aug. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-643656

RESUMO

Vertebrates have a central clock and also several peripheral clocks. Light responses might result from the integration of light signals by these clocks. The dermal melanophores of Xenopus laevis have a photoreceptor molecule denominated melanopsin (OPN4x). The mechanisms of the circadian clock involve positive and negative feedback. We hypothesize that these dermal melanophores also present peripheral clock characteristics. Using quantitative PCR, we analyzed the pattern of temporal expression of Opn4x and the clock genes Per1, Per2, Bmal1, and Clock in these cells, subjected to a 14-h light:10-h dark (14L:10D) regime or constant darkness (DD). Also, in view of the physiological role of melatonin in the dermal melanophores of X. laevis, we determined whether melatonin modulates the expression of these clock genes. These genes show a time-dependent expression pattern when these cells are exposed to 14L:10D, which differs from the pattern observed under DD. Cells kept in DD for 5 days exhibited overall increased mRNA expression for Opn4x and Clock, and a lower expression for Per1, Per2, and Bmal1. When the cells were kept in DD for 5 days and treated with melatonin for 1 h, 24 h before extraction, the mRNA levels tended to decrease for Opn4x and Clock, did not change for Bmal1, and increased for Per1 and Per2 at different Zeitgeber times (ZT). Although these data are limited to one-day data collection, and therefore preliminary, we suggest that the dermal melanophores of X. laevis might have some characteristics of a peripheral clock, and that melatonin modulates, to a certain extent, melanopsin and clock gene expression.


Assuntos
Animais , Proteínas CLOCK/metabolismo , Melanóforos/fisiologia , Melatonina/farmacologia , Opsinas de Bastonetes/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/genética , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Melanóforos/efeitos dos fármacos , Reação em Cadeia da Polimerase , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , RNA Mensageiro , Opsinas de Bastonetes/efeitos dos fármacos , Xenopus laevis , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
6.
Experimental & Molecular Medicine ; : 642-652, 2012.
Artigo em Inglês | WPRIM | ID: wpr-149764

RESUMO

Low density lipoprotein receptor (LDLR) plays an important role in the cholesterol homeostasis. We examined the possible circadian regulation of LDLR and mechanism(s) underlying it. In mice, blood glucose and plasma triglyceride, total and high density lipoprotein cholesterol varied distinctively throughout a day. In addition, LDLR mRNA oscillated in the liver in a functional clock-dependent manner. Accordingly, analysis of human LDLR promoter sequence revealed three putative E-boxes, raising the possible regulation of LDLR expression by E-box-binding transcription factors. To test this possibility, human LDLR promoter reporter constructs were transfected into HepG2 cells and the effects of CLOCK/BMAL1, Hes1, and Hes6 expression were analyzed. It was found that positive circadian transcription factor complex CLOCK/BMAL1 upregulated human LDLR promoter activity in a serum-independent manner, while Hes family members Hes1 and Hes6 downregulated it only under serum-depleted conditions. Both effects were mapped to proximal promoter region of human LDLR, where mutation or deletion of well-known sterol regulatory element (SRE) abolished only the repressive effect of Hes1. Interestingly, hes6 and hes1 mRNA oscillated in an anti-phasic manner in the wild-type but not in the per1-/-per2-/- mouse. Comparative analysis of mouse, rat and human hes6 genes revealed that three E-boxes are conserved among three species. Transfection and site-directed mutagenesis studies with hes6 reporter constructs confirmed that the third E-box in the exon IV is functionally induced by CLOCK/BMAL1. Taken together, these results suggest that LDLR expression is under circadian control involving CLOCK/BMAL1 and Hes family members Hes1 and Hes6.


Assuntos
Animais , Humanos , Masculino , Camundongos , Fatores de Transcrição ARNTL/fisiologia , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas CLOCK/fisiologia , Colesterol/sangue , Ritmo Circadiano , Elementos E-Box , Éxons , Regulação da Expressão Gênica , Células Hep G2 , Proteínas de Homeodomínio/genética , Homeostase , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Receptores de LDL/genética , Proteínas Repressoras/genética , Transcrição Gênica
7.
Annals of the Academy of Medicine, Singapore ; : 662-668, 2008.
Artigo em Inglês | WPRIM | ID: wpr-358753

RESUMO

The sleep-wake cycle displays a characteristic 24-hour periodicity, providing an opportunity to dissect the endogenous circadian clock through the study of aberrant behaviour. This article surveys the properties of circadian clocks, with emphasis on mammals. Information was obtained from searches of peer-reviewed literature in the PUBMED database. Features that are highlighted include the known molecular components of clocks, their entrainment by external time cues and the output pathways used by clocks to regulate metabolism and behaviour. A review of human circadian rhythm sleep disorders follows, including recent discoveries of their genetic basis. The article concludes with a discussion of future approaches to the study of human circadian biology and sleep-wake behaviour.


Assuntos
Animais , Humanos , Fatores de Transcrição ARNTL , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Fisiologia , Proteínas CLOCK , Ritmo Circadiano , Genética , Fisiologia , Neurônios Aferentes , Fisiologia , Neurônios Eferentes , Fisiologia , Polimorfismo de Nucleotídeo Único , Transtornos do Sono do Ritmo Circadiano , Genética , Núcleo Supraquiasmático , Biologia Celular , Fisiologia , Transativadores , Fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA