RESUMO
Enzyme separation, purification, immobilization, and catalytic performance improvement have been the research hotspots and frontiers as well as the challenges in the field of biocatalysis. Thus, the development of novel methods for enzyme purification, immobilization, and improvement of their catalytic performance and storage are of great significance. Herein, ferritin was fused with the lichenase gene to achieve the purpose. The results showed that the fused gene was highly expressed in the cells of host strains, and that the resulted fusion proteins could self-aggregate into carrier-free active immobilized enzymes in vivo. Through low-speed centrifugation, the purity of the enzymes was up to > 90%, and the activity recovery was 61.1%. The activity of the enzymes after storage for 608 h was higher than the initial activity. After being used for 10 cycles, it still maintained 50.0% of the original activity. The insoluble active lichenase aggregates could spontaneously dissolve back into the buffer and formed the soluble polymeric lichenases with the diameter of about 12 nm. The specific activity of them was 12.09 times that of the free lichenase, while the catalytic efficiency was 7.11 times and the half-life at 50 ℃ was improved 11.09 folds. The results prove that the ferritin can be a versatile tag to trigger target enzyme self-aggregation and oligomerization in vivo, which can simplify the preparation of the target enzymes, improve their catalysis performance, and facilitate their storage.
Assuntos
Biocatálise , Enzimas Imobilizadas/metabolismo , Ferritinas/metabolismo , Glicosídeo Hidrolases/metabolismoRESUMO
BACKGROUND: LXYL-P1-2 is the first reported glycoside hydrolase that can catalyze the transformation of 7-b-xylosyl-10-deacetyltaxol (XDT) to 10-deacetyltaxol (DT) by removing the D-xylosyl group at the C7 position. Successful synthesis of paclitaxel by one-pot method combining the LXYL-P1-2 and 10- deacetylbaccatin III-10-b-O-acetyltransferase (DBAT) using XDT as a precursor, making LXYL-P1-2 a highly promising enzyme for the industrial production of paclitaxel. The aim of this study was to investigate the catalytic potential of LXYL-P1-2 stabilized on magnetic nanoparticles, the surface of which was modified by Ni2+-immobilized cross-linked Fe3O4@Histidine. RESULTS: The diameter of matrix was 2040 nm. The Km value of the immobilized LXYL-P1-2 catalyzing XDT (0.145 mM) was lower than that of the free enzyme (0.452 mM), and the kcat/Km value of immobilized enzyme (12.952 mM s 1 ) was higher than the free form (8.622 mM s 1 ). The immobilized form maintained 50% of its original activity after 15 cycles of reuse. In addition, the stability of immobilized LXYL-P1-2, maintained 84.67% of its initial activity, improved in comparison with free form after 30 d storage at 4 C. CONCLUSIONS: This investigation not only provides an effective procedure for biocatalytic production of DT, but also gives an insight into the application of magnetic material immobilization technology.
Assuntos
Paclitaxel/biossíntese , Glicosídeo Hidrolases/metabolismo , Cinética , Enzimas Imobilizadas , Nanopartículas , ImãsRESUMO
α-L-rhamnosidase is a very important industrial enzyme that is widely distributed in a variety of organisms. α-L-rhamnosidase of different origins show functional diversity. For example, the optimal pH of α-L-rhamnosidase from bacteria is close to neutral or alkaline, while the optimal pH of α-L-rhamnosidase from fungi is in the acidic range. Furthermore, the enzymatic properties of α-L-rhamnosidases of different origins differ in terms of the optimal temperature, the thermal stability, and the substrate specificity, which determine the different applications of these enzymes. In this connection, it is crucial to elucidate the similarities and differences in the catalytic mechanism and substrate specificity of α-L-rhamnosidase of different origins through analyzing its enzymatic properties. Moreover, it is important to explore and understand the effects of aglycon and metal cations on enzyme activity and the competitive inhibition of L-rhamnose and glucose on enzymes. These knowledge can help discover α-L-rhamnosidase of industrial significance and promote its industrial application.
Assuntos
Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Ramnose , Especificidade por Substrato , TemperaturaRESUMO
Water solubility, stability, and bioavailability, can be substantially improved after glycosylation. Glycosylation of bioactive compounds catalyzed by glycoside hydrolases (GHs) and glycosyltransferases (GTs) has become a research hotspot. Thanks to their rich sources and use of cheap glycosyl donors, GHs are advantageous in terms of scaled catalysis compared to GTs. Among GHs, sucrose phosphorylase has attracted extensive attentions in chemical engineering due to its prominent glycosylation activity as well as its acceptor promiscuity. This paper reviews the structure, catalytic characteristics, and directional redesign of sucrose phosphorylase. Meanwhile, glycosylation of diverse chemicals with sucrose phosphorylase and its coupling applications with other biocatalysts are summarized. Future research directions were also discussed based on the current research progress combined with our working experience.
Assuntos
Glucosiltransferases/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosilação , Glicosiltransferases/genéticaRESUMO
Background: Burdock (Arctium lappa L.) is a fructan-rich plant with prebiotic potential. The aim of this study was to develop an efficient enzymatic route to prepare fructooligosaccharides (FOS)-rich and highly antioxidative syrup using burdock root as a raw material. Results: Endo-inulinase significantly improved the yield of FOS 2.4-fold while tannase pretreatment further increased the yield of FOS 2.8-fold. Other enzymes, including endo-polygalacturonase, endo-glucanase and endo-xylanase, were able to increase the yield of total soluble sugar by 11.1% (w/w). By this process, a new enzymatic process for burdock syrup was developed and the yield of burdock syrup increased by 25% (w/w), whereas with FOS, total soluble sugars, total soluble protein and total soluble polyphenols were enhanced to 28.8%, 53.3%, 8.9% and 3.3% (w/w), respectively. Additionally, the scavenging abilities of DPPH and hydroxyl radicals, and total antioxidant capacity of the syrup were increased by 23.7%, 51.8% and 35.4%, respectively. Conclusions: Our results could be applied to the development of efficient extraction of valuable products from agricultural materials using enzyme-mediated methods.
Assuntos
Oligossacarídeos/química , Raízes de Plantas/química , Frutose/química , Glicosídeo Hidrolases/metabolismo , Antioxidantes/química , Oligossacarídeos/metabolismo , Poligalacturonase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Cromatografia Líquida de Alta Pressão , Radical Hidroxila , Arctium , Alimento Funcional , Polifenóis , Frutose/metabolismo , Antioxidantes/metabolismoRESUMO
Background: α-L-Arabinofuranosidase (EC 3.2.1.55) catalyzes the hydrolysis of terminal α-L-1,2-, -1,3-, and -1,5- arabinofuranosyl residues in arabinose-containing polymers, and hence, it plays an important role in hemicellulose degradation. Herein, the bacterium Paenibacillus polymyxa, which secretes arabinofuranosidase with high activity, was selected for enzyme production, purification, and characterization. Results: Medium components and cultural conditions were optimized by the response surface method using shake flask cultures. Arabinofuranosidase production reached 25.2 U/mL under optimized conditions, which were pH 7.5, 28°C, and a basic medium supplemented with 1.5 g/L mannitol and 3.5 g/L soymeal. Furthermore, the arabinofuranosidase secreted by P. polymyxa, named as PpAFase-1, was partially purified from the supernatant using a DEAE Sepharose Fast Flow column and a hydroxyapatite column. The approximate molecular mass of the purified PpAFase-1 was determined as 56.8 kDa by SDS-PAGE. Protein identification by mass spectrometry analysis showed that the deduced amino acid sequence had significant similarity to the glycosyl hydrolase family 51. The deduced gene of 1515 bp was cloned and expressed in Escherichia coli BL21 (DE3) cells. Purified recombinant PpAFase-1 was active toward p-nitrophenyl-α-L-arabinofuranoside (pNPAraf). The Km and kcat values toward pNPAraf were 0.81 mM and 53.2 s−1 , respectively. When wheat arabinoxylan and oat spelt xylan were used as substrates, PpAFase-1 showed poor efficiency. However, a synergistic effect was observed when PpAFase-1 was combined with xylanase from Thermomyces lanuginosus. Conclusion: A novel GH51 enzyme PpAFase-1 was cloned from the genome of P. polymyxa and expressed in E. coli. This enzyme may be suitable for hemicellulose degradation on an industrial scale.
Assuntos
Paenibacillus polymyxa/enzimologia , Glicosídeo Hidrolases/metabolismo , Arabinose , Espectrometria de Massas , Celulose , Eletroforese em Gel de Poliacrilamida , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/biossínteseRESUMO
Background: A new ι-carrageenase-producing strain was screened from mangroves and authenticated as Pseudoalteromonas carrageenovora ASY5 in our laboratory. The potential application of this new strain was evaluated. Results: Medium compositions and culturing conditions in shaking flask fermentation were firstly optimized by single-factor experiment. ι-Carrageenase activity increased from 0.34 U/mL to 1.08 U/mL after test optimization. Optimal fermentation conditions were 20°C, pH 7.0, incubation time of 40 h, 15 g/L NaCl, 1.5% (w/v) yeast extract as nitrogen source, and 0.9% (w/v) ι-carrageenan as carbon source. Then, the crude ι-carrageenase was characterized. The optimum temperature and pH of the ι-carrageenase were 40°C and 8.0, respectively. The enzymatic activity at 3540°C for 45 min retained more than 40% of the maximum activity. Meanwhile, The ι-carrageenase was inhibited by the addition of 1 mmol/L Cd2+ and Fe3+ but increased by the addition of 1 mmol/L Ag+, Ba2+, Ca2+, Co2+, Mn2+, Zn2+, Fe2+, and Al3+. The structure of oligosaccharides derived from ι-carrageenan was detected using electrospray ionization mass spectrometry (ESI-MS). The ι-carrageenase degraded ι-carrageenan, yielding disaccharides and tetrasaccharides as main products. Conclusions: The discovery and study of new ι-carrageenases are beneficial not only for the production of ι-carrageenan oligosaccharides but also for the further utilization in industrial production.
Assuntos
Proteínas de Bactérias/metabolismo , Pseudoalteromonas/enzimologia , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos/biossíntese , Temperatura , Carbono/metabolismo , Carragenina/biossíntese , Espectrometria de Massas por Ionização por Electrospray , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise , Nitrogênio/metabolismoRESUMO
ABSTRACT Here, we show the draft genome sequence of Streptomyces sp. F1, a strain isolated from soil with great potential for secretion of hydrolytic enzymes used to deconstruct cellulosic biomass. The draft genome assembly of Streptomyces sp. strain F1 has 69 contigs with a total genome size of 8,142,296 bp and G + C 72.65%. Preliminary genome analysis identified 175 proteins as Carbohydrate-Active Enzymes, being 85 glycoside hydrolases organized in 33 distinct families. This draft genome information provides new insights on the key genes encoding hydrolytic enzymes involved in biomass deconstruction employed by soil bacteria.
Assuntos
Proteínas de Bactérias/genética , Genoma Bacteriano , Glicosídeo Hidrolases/genética , Microbiologia do Solo , Streptomyces/enzimologia , Streptomyces/isolamento & purificação , Proteínas de Bactérias/metabolismo , Composição de Bases , Brasil , Glicosídeo Hidrolases/metabolismo , Família Multigênica , Filogenia , Streptomyces/classificação , Streptomyces/genéticaRESUMO
Background: Pullulanase production in both wild-type strains and recombinantly engineered strains remains low. The Shine-Dalgarno (SD) sequence and stem-loop structure in the 5' or 3' untranslated region (UTR) are well-known determinants of mRNA stability. This study investigated the effect of mRNA stability on pullulanase heterologous expression. Results: We constructed four DNA fragments, pulA, SD-pulA, pulA-3t, and SD-pulA-3t, which were cloned into the expression vector pHT43 to generate four pullulanase expression plasmids. The DNA fragment pulA was the coding sequence (CDS) of pulA in Klebsiella variicola Z-13. SD-pulA was constructed by the addition of the 5' SD sequence at the 5' UTR of pulA. pulA-3t was constructed by the addition of a 3' stem-loop structure at the 3' UTR of pulA. SD-pulA-3t was constructed by the addition of the 5' SD sequence at the 5' UTR and a 3' stem-loop structure at the 3' UTR of pulA. The four vectors were transformed into Escherichia coli BL21(DE3). The pulA mRNA transcription of the transformant harboring pHT43-SD-pulA-3t was 338.6%, 34.9%, and 79.9% higher than that of the other three transformants, whereas the fermentation enzyme activities in culture broth and intracellularly were 107.0 and 584.1 times, 1.2 and 2.0 times, and 62.0 and 531.5 times the amount of the other three transformants (pulA, SD-pulA, and pulA-3 t), respectively. Conclusion: The addition of the 5' SD sequence at the 5' UTR and a 3' stem-loop structure at the 3' UTR of the pulA gene is an effective approach to increase pulA gene expression and fermentation enzyme activity.
Assuntos
Escherichia coli/enzimologia , Escherichia coli/genética , Glicosídeo Hidrolases/metabolismo , Transformação Genética , Expressão Gênica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estabilidade de RNA , Fermentação , Vetores Genéticos , Glicosídeo Hidrolases/genéticaRESUMO
Background: Current commercial production of isomalto-oligosaccharides (IMOs) commonly involves a lengthy multistage process with low yields. Results: To improve the process efficiency for production of IMOs, we developed a simple and efficient method by using enzyme cocktails composed of the recombinant Bacillus naganoensis pullulanase produced by Bacillus licheniformis, α-amylase from Bacillus amyloliquefaciens, barley bran ß-amylase, and α-transglucosidase from Aspergillus niger to perform simultaneous saccharification and transglycosylation to process the liquefied starch. After 13 h of reacting time, 49.09% IMOs (calculated from the total amount of isomaltose, isomaltotriose, and panose) were produced. Conclusions: Our method of using an enzyme cocktail for the efficient production of IMOs offers an attractive alternative to the process presently in use.
Assuntos
Oligossacarídeos/metabolismo , Amido/metabolismo , Enzimas/metabolismo , Isomaltose/metabolismo , Oligossacarídeos/biossíntese , Aspergillus niger/enzimologia , Temperatura , Bacillus/enzimologia , beta-Amilase/metabolismo , Glicosilação , Liquefação , alfa-Amilases/metabolismo , Fermentação , Glucosidases/metabolismo , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de HidrogênioRESUMO
Background: A simple and efficient strategy for agarase immobilization was developed with carboxyl-functionalized magnetic nanoparticles (CMNPs) as support. The CMNPs and immobilized agarase (agarase-CMNPs) were characterized by transmission electron microscopy, dynamic light scattering, vibrating sample magnetometry, scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, and zeta-potential analysis. The hydrolyzed products were separated and detected by ESI-TOF-MS. Results: The agarase-CMNPs exhibited a regular spherical shape with a mean diameter of 12 nm, whereas their average size in the aqueous solution was 43.7 nm as measured by dynamic light scattering. These results indicated that agarase-CMNPs had water swelling properties. Saturation magnetizations were 44 and 29 emu/g for the carriers and agarase-CMNPs, respectively. Thus, the particles had superparamagnetic characteristics, and agarase was successfully immobilized onto the supports. Agaro-oligosaccharides were prepared with agar as substrate using agarase-CMNPs as biocatalyst. The catalytic activity of agarase-CMNPs was unchanged after six reuses. The ESI-TOF mass spectrogram showed that the major products hydrolyzed by agarase-CMNPs after six recycle uses were neoagarotetraose, neoagarohexaose, and neoagarooctaose. Meanwhile, the end-products after 90 min of enzymatic treatment by agarase-CMNPs were neoagarobiose and neoagarotetraose. Conclusions: The enhanced agarase properties upon immobilization suggested that CMNPs can be effective carriers for agarase immobilization. Agarase-CMNPs can be remarkably used in developing systems for repeated batch production of agar-derived oligosaccharides.
Assuntos
Oligossacarídeos/metabolismo , Enzimas Imobilizadas , Nanopartículas de Magnetita/química , Glicosídeo Hidrolases/metabolismo , Termogravimetria , Difração de Raios X , Estabilidade Enzimática , Catálise , Microscopia Eletrônica de Transmissão , Magnetometria , Difusão Dinâmica da Luz , Glicosídeo Hidrolases/químicaRESUMO
Abstract This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract.
Assuntos
Quitinases/análise , Quitinases/química , Quitinases/enzimologia , Quitinases/crescimento & desenvolvimento , Quitinases/metabolismo , /análise , /química , /enzimologia , /crescimento & desenvolvimento , /metabolismo , Proteínas Fúngicas/análise , Proteínas Fúngicas/química , Proteínas Fúngicas/enzimologia , Proteínas Fúngicas/crescimento & desenvolvimento , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/análise , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/enzimologia , Glicosídeo Hidrolases/crescimento & desenvolvimento , Glicosídeo Hidrolases/metabolismo , Micélio/análise , Micélio/química , Micélio/enzimologia , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Paquistão/análise , Paquistão/química , Paquistão/enzimologia , Paquistão/crescimento & desenvolvimento , Paquistão/metabolismo , Trichoderma/análise , Trichoderma/química , Trichoderma/enzimologia , Trichoderma/crescimento & desenvolvimento , Trichoderma/metabolismoRESUMO
A new inulinase-producing strain was isolated from rhizosphere soils of Jerusalem artichoke collected from Shihezi (Xinjiang, China) using Jerusalem artichoke power (JAP) as sole carbon source. It was identified as an
Assuntos
Aspergillus niger/enzimologia , Aspergillus niger/genética , Reatores Biológicos/microbiologia , Glicosídeo Hidrolases/metabolismo , Helianthus/microbiologia , Aspergillus niger/metabolismo , China , Meios de Cultura , Etanol/metabolismo , Fermentação/fisiologia , Inulina/metabolismo , Tipagem Molecular , Mutação , Técnicas de Tipagem Micológica , Rizosfera , /genética , Microbiologia do SoloRESUMO
An extracellular β-agarase was purified from
Assuntos
Adaptação Fisiológica/fisiologia , Ágar/metabolismo , Glicosídeo Hidrolases/metabolismo , Pseudoalteromonas/enzimologia , Regiões Antárticas , Adaptação Fisiológica/genética , Proteínas de Bactérias/metabolismo , Temperatura Baixa , Dissacarídeos/biossíntese , Sedimentos Geológicos/microbiologia , Glicosídeo Hidrolases/isolamento & purificação , Hidrólise , /genéticaRESUMO
Pullulanase production from a fungus Hypocrea jecorina QM9414 that produces native extracellular hydrolases having industrial applications was carried out in a shaking flask culture containing 0.5% amylopectin at a pH of 6.50 at 30°C. The enzyme was purified 11-fold by ammonium sulfate fractionation, anion-exchange and gel-filtration chromatographies with a yield of 10.12% and a specific activity of 1.36 ± 0.14 U/mg protein. The molecular mass of pullulanase was estimated to be 130.56 kDa by PAGE and SDS-PAGE, indicating that the native enzyme was a monomer. The optimum pH and temperature for purified enzyme was 6.5 and between 35°-65°C, respectively. The Km values for amylopectin, starch and pullulan as substrates were 10.7, 15.5 and 38.4 mg/mL, respectively. The Vmax values were found to be 3.32, 3.32 and 3.82 ΔA/min for amylopectin, starch and pullulan, respectively. The enzyme was stable at 40-70°C for 30 min, but lost about 33% of its activity at 80°C and about 43% of activity at 90°C and 100°C for the same incubation period. Pullulanase activity was stimulated by CoCl2, NiCl2, KI, NaCl, MgCl2, and LiSO4. The enzyme was slightly inhibited by urea, CaCl2 and b-mercaptoethanol. The enyzmatic characteristics, substrate specificity and the products of hydrolysis indicated that the enzyme was similar to those of type II pullulanases.
Assuntos
Células Cultivadas , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Concentração de Íons de Hidrogênio , Hypocrea/enzimologia , Hypocrea/crescimento & desenvolvimento , Cinética , Especificidade por Substrato , TemperaturaRESUMO
The mangrove ecosystem is an unexplored source for biotechnological applications. In this unique environment, endemic bacteria have the ability to thrive in the harsh environmental conditions (salinity and anaerobiosis), and act in the degradation of organic matter, promoting nutrient cycles. Thus, this study aimed to assess the cellulolytic activities of bacterial groups present in the sediment from a mangrove located in Ilha do Cardoso (SP, Brazil). To optimize the isolation of cellulolytic bacteria, enrichments in two types of culture media (tryptone broth and minimum salt medium), both supplemented with 5% NaCl and 1% of cellulose, were performed. Tests conducted with the obtained colonies showed a higher occurrence of endoglycolytic activity (33 isolates) than exoglycolytic (19 isolates), and the degradation activity was shown to be modulated by the presence of NaCl. The isolated bacteria were clustered by BOX-PCR and further classified on the basis of partial 16S rRNA sequences as Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes or Bacteroidetes. Therefore, this study highlights the importance of studies focusing on the endemic species found in mangroves to exploit them as novel biotechnological tools for the degradation of cellulose.
Assuntos
Bactérias/enzimologia , Sedimentos Geológicos/microbiologia , Glicosídeo Hidrolases/metabolismo , Áreas Alagadas , Brasil , Bactérias/isolamento & purificação , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Glicosídeo Hidrolases/genética , Dados de Sequência Molecular , Filogenia , /genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismoRESUMO
Background: Inulinases have been extracted and characterized from inulin-storing tissues; however, production of microbial inulinases have recently draw much attention as they offer several industrial advantages. Many microorganisms, including filamentous fungi, yeast and bacteria have been claimed as inulinase producers. These hydrolases are usually inducible and their exo-acting forms may hydrolyze fructose polymers (inulin) and oligosaccharides such as sucrose and raffinose. Fungal inulinase extracts are often produced as stable mixture of highly active fructanhydrolases. From a practical prospective, the best known inulinases to date are those produced by species of Penicillium, Aspergillus and Kluyveromyces. Results: The production of extracellular inulinase by A. kawachii in liquid cultures, using either inulin or yacon derived materials as CES as well as inulinase inducers, is reported. In addition, a partial characterization of the enzyme activity is included. Conclusions: Yacon derived products, particularly yacon juice, added to the culture medium proved to be a good CES for fungal growth as well as an inducer of enzyme synthesis. Partial characterization of the enzyme revealed that it is quite stable in a wide range of pH and temperature. In addition, characterization of the reaction products revealed that this enzyme corresponds to an exo-type. These facts are promising considering its potential application in inulin hydrolysis for the production of high fructose syrups.
Assuntos
Aspergillus/enzimologia , Glicosídeo Hidrolases/metabolismo , Temperatura , Estabilidade Enzimática , Reatores Biológicos , Asteraceae , Técnicas de Cultura Celular por Lotes , Concentração de Íons de Hidrogênio , Hidrólise , ÍonsRESUMO
The manner by which effects of simultaneous mutations combine to change enzymatic activity is not easily predictable because these effects are not always additive in a linear manner. Hence, the characterization of the effects of simultaneous mutations of amino acid residues that bind the substrate can make a significant contribution to the understanding of the substrate specificity of enzymes. In the â-glycosidase from Spodoptera frugiperda (Sfâgly), both residues Q39 and E451 interact with the substrate and this is essential for defining substrate specificity. Double mutants of Sfâgly (A451E39, S451E39 and S451N39) were prepared by site-directed mutagenesis, expressed in bacteria and purified using affinity chromatography. These enzymes were characterized using p-nitrophenyl â-galactoside and p-nitrophenyl â-fucoside as substrates. The k cat/Km ratio for single and double mutants of Sfâgly containing site-directed mutations at positions Q39 and E451 was used to demonstrate that the effect on the free energy of ES (enzyme-transition state complex) of the double mutations (∆∆Gxy) is not the sum of the effects resulting from the single mutations (∆∆Gx and ∆∆Gy). This difference in ∆∆G indicates that the effects of the single mutations partially overlap. Hence, this common effect counts only once in ∆∆Gxy. Crystallographic data on â-glycosidases reveal the presence of a bidentate hydrogen bond involving residues Q39 and E451 and the same hydroxyl group of the substrate. Therefore, both thermodynamic and crystallographic data suggest that residues Q39 and E451 exert a mutual influence on their respective interactions with the substrate.
Assuntos
Animais , Spodoptera/enzimologia , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Cromatografia Líquida , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Glicosídeos/química , Glicosídeos/metabolismo , Dados de Sequência Molecular , Especificidade por Substrato , beta-Glucosidase/genéticaRESUMO
Approximately 1 million tons of Agave tequilana plants are processed annually by the Mexican Tequila industry generating vast amounts of agricultural waste. The aim of this study was to investigate the potential use of Agave tequilana waste as substrate for the production of commercially important enzymes. Two strains of Aspergillus niger (CH-A-2010 and CH-A-2016), isolated from agave fields, were found to grow and propagate in submerged cultures using Agave tequilana waste as substrate. Isolates showed simultaneous extracellular inulinase, xylanase, pectinase, and cellulase activities. Aspergillus CH-A-2010 showed the highest production of inulinase activity (1.48 U/ml), whereas Aspergillus niger CH-A-2016 produced the highest xylanase (1.52 U/ml) and endo-pectinase (2.7U/ml) activities. In both cases production of enzyme activities was significantly higher on Agave tequilana waste than that observed on lemon peel and specific polymeric carbohydrates. Enzymatic hydrolysis of raw A. tequilana stems and leaves, by enzymes secreted by the isolates yielded maximum concentrations of reducing sugars of 28.2 g/l, and 9.9 g/l respectively. In conclusion, Agave tequilana waste can be utilized as substrate for the production of important biotechnological enzymes.
Assuntos
Agave/química , Agricultura , Aspergillus niger/enzimologia , Biotecnologia/métodos , Celulase/metabolismo , Citrus/química , Enzimas/metabolismo , Glicosídeo Hidrolases/metabolismo , Hidrólise , Resíduos Industriais , Folhas de Planta/química , Caules de Planta/química , Poligalacturonase/metabolismo , Polissacarídeos/química , Fatores de Tempo , Xilosidases/metabolismoRESUMO
Mucopolysaccharidoses are a group of inherited metabolic diseases caused by the absence or deficiency of the lysosomal enzymes that are needed for breaking down glycosaminoglycans (GAGs). Over time, GAGs collect in cells, blood and connective tissues, and increased amounts are excreted in the urine. The result is permanent and includes progressive cell damage that affects the individuals appearance, physical abilities, organ and system functioning and, in certain cases, mental development. Enzyme replacement therapies are currently in use or are being tested for at least three different subtypes (I, II and VI). The aim of the present study was to evaluate the effectiveness and safety of laronidase for treating mucopolysaccharidosis type I. A systematic review of the literature was conducted. A computerized electronic search was then conducted using the CENTRAL, Pubmed, EMBASE, and LILACS databases, to identify any randomized controlled trials. The last date of the search was June 2006. There was no possibility of combining the results, because only one study was included. In the pivotal placebo-controlled trial conducted over a 26-week period, there was a reduction in the urinary excretion of GAGs among treated patients. Regarding adverse events, there were no laronidase-related serious adverse events or deaths. Laronidase seems to be a promising agent for treating mucopolysaccharidosis type I, as shown by the reduction in the urinary excretion of GAGs and the associated improvements in vital capacity and in the performance of defined physical tasks.