Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Adicionar filtros








Intervalo de ano
1.
Journal of Southern Medical University ; (12): 367-374, 2022.
Artigo em Chinês | WPRIM | ID: wpr-936325

RESUMO

OBJECTIVE@#To investigate the effect of triptolide (TPL) on inflammatory response and migration of fibroblast like synovial cells (FLS) in rheumatoid arthritis (RA-FLS) and the mechanism of circular noncoding RNA (circRNA) 0003353 for mediating this effect.@*METHODS@#We collected peripheral blood mononuclear cells (PBMCs) and serum samples from 50 hospitalized RA patients and 30 healthy individuals for detecting the expression of circRNA 0003353, immune and inflammatory indexes (ESR, CRP, RF, anti-CCP, IgA, IgG, IgM, C3, and C4) and DAS28 score. Cultured RA-FLS was treated with 10 ng/mL TPL and transfected with a circRNA 0003353 overexpression plasmid, and cell counting kit-8 (CCK-8) assay and Transwell assay were used to detect the changes in the viability and migration of the cells. Enzyme-linked immunosorbent assay (ELISA) was used to examine the cytokines IL-4, IL-6, and IL-17, and real-time fluorescence quantitative PCR (RT-qPCR) was performed to detect the expression of circRNA 003353; Western blotting was used to detect the expressions of p-JAK2, pSTAT3, JAK2 and STAT3 proteins in the treated cells.@*RESULTS@#The expression of circRNA 0003353 was significantly increased in PBMCs from RA patients and showed a good performance in assisting the diagnosis of RA (AUC=90.5%, P < 0.001, 95% CI: 0.83-0.98). CircRNA 0003353 expression was positively correlated with ESR, RF and DAS28 (P < 0.05). Treatment with TPL significantly decreased the expression of circRNA 0003353, suppressed the viability and migration ability, decreased the expressions of IL-6 and IL-17, and increased the expression IL-4 in cultured RA-FLS in a time-dependent manner (P < 0.01). TNF-α stimulation of RA-FLS significantly increased the ratios of p-JAK2/JAK2 and p-STAT3/STAT3, which were obviously lowered by TPL treatment (P < 0.01). TPL-treated RA-FLS overexpressing circRNA 0003353 showed significantly increased cell viability and migration ability with decreased IL-4 expression and increased IL-6 and IL-17 expressions and ratios of p-JAK2/ JAK2 and p-STAT3/STAT3 (P < 0.01).@*CONCLUSION@#The expression of circRNA 0003353 is increased in PBMCs in RA patients and in RA-FLS. TPL treatment can regulate JAK2/STAT3 signal pathway and inhibit the inflammatory response and migration of RA-FLS through circRNA 0003353.


Assuntos
Humanos , Artrite Reumatoide/patologia , Células Cultivadas , Diterpenos/farmacologia , Compostos de Epóxi/farmacologia , Fibroblastos/patologia , Interleucina-17/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Janus Quinase 2/metabolismo , Leucócitos Mononucleares/metabolismo , Fenantrenos/farmacologia , RNA Circular/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Membrana Sinovial/patologia
2.
Chinese Journal of Oncology ; (12): 728-736, 2022.
Artigo em Chinês | WPRIM | ID: wpr-940933

RESUMO

Objective: To investigate the role and mechanism of tumor-derived mesenchymal stem cells in regulating the M2 polarization of macrophages within gastric cancer microenvironment. Methods: Gastric cancer tissues and the adjacent non-cancerous tissues were collected from patients underwent gastric cancer resection in the First People's Hospital of Lianyungang during 2018. In our study, THP-1-differentiated macrophages were co-cultured with gastric cancer-derived mesenchymal stem cells (GC-MSCs). Then, the M2 subtype-related gene, the markers expressed on cell surface and the cytokine profile were analyzed by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), flow cytometry and Luminex liquid chip, respectively. The key cytokines mediating the inducing effect of GC-MSCs on macrophage polarization into the M2 subtype were detected and screened by Luminex liquid chip, which were further confirmed by the neutralizing antibody test. The expressions of macrophage proteins involved in M2 polarization-related signaling pathways under the different co-culture conditions of GC-MSCs were detected by western blot. Results: In Mac+ GC-MSC-culture medium (CM) group, the expression levels of Ym-1 and Fizz-1 (1.53±0.32 and 13.22±1.05, respectively), which are markers for M2 subtype, were both significantly higher than those of Mac group (1.00±0.05 and 1.21±0.38, respectively, P<0.05). The level of iNOS in Mac+ GC-MSC-CM group (0.60±0.41) was significantly lower than that of Mac group (1.06±0.38, P=0.023). In Mac+ GC-MSC-Transwell (TW) group, the expression levels of Ym-1 and Fizz-1 (1.47±0.09 and 13.16±2.77, respectively) were both significantly higher than those of Mac group (1.00±0.05 and 1.21±0.38, respectively, P<0.05). The level of iNOS in Mac+ GC-MSC-CM group (0.56±0.03) was significantly lower than that of Mac group (1.06±0.38, P=0.026). The ratios of CD163(+) /CD204(+) cells in Mac+ GC-MSC-CM and Mac+ GC-MSC-TW groups (3.80% and 4.40%, respectively) were both remarkably higher than that of Mac group (0.60%, P<0.05). The expression levels of IL-10, IL-6, MCP-1 and VEGF in Mac+ GC-MSC-CM group were (592.60±87.52), (1 346.80±64.70), (11 256.00±29.03) and (1 463.90±66.67) pg/ml, respectively, which were significantly higher than those of Mac group [(41.03±2.59), (17.35±1.79), (5 213.30±523.71) and (267.12±12.06) pg/ml, respectively, P<0.05]. The levels of TNF-α, IP-10, RANTES and MIP-1α were (95.57±9.34), (410.48±40.68), (6 967.30±1.29) and (1 538.70±283.04) pg/ml, which were significantly lower than those of Mac group [(138.01±24.31, (1 298.60±310.50), (14 631.00±4.21) and (6 633.20±1.47) pg/ml, respectively, P<0.05]. The levels of IL-6 and IL-8 in GC-MSCs [(11 185.02±2.82) and (12 718.03±370.17) pg/ml, respectively] were both strikingly higher than those of MSCs from adjacent non-cancerous gastric cancer tissues [(270.71±59.38) and (106.04±32.84) pg/ml, repectively, P<0.05]. The ratios of CD86(+) cells in Mac+ IL-6-blocked-GC-MSC-CM and Mac+ IL-8-blocked-GC-MSC-CM groups (28.80% and 31.40%, respectively) were both higher than that of Mac+ GC-MSC-CM group (24.70%). Compared to Mac+ GC-MSC-CM group (13.70%), the ratios of CD204(+) cells in Mac+ IL-6-blocked-GC-MSC-CM and Mac+ IL-8-blocked-GC-MSC-CM groups (9.90% and 8.70%, separately) were reduced. The expression levels of p-JAK2 and p-STAT3, which are proteins of macrophage M2 polarization-related signaling pathway, in Mac+ GC-MSC-CM group (0.86±0.01 and 1.08±0.01, respectively) were significantly higher than those of Mac group (0.50±0.01 and 0.82±0.01, respectively, P<0.05). The expression levels of p-JAK2 in Mac+ IL-6-blocked-GC-MSC-CM group (0.47±0.02) were significantly lower those that of Mac+ GC-MSC-CM group (0.86±0.01, P<0.05). The expression levels of p-JAK2 and p-STAT3 in Mac+ IL-8-blocked-GC-MSC-CM group (0.50±0.01 and 0.85±0.01, respectively) were both significantly lower than those of Mac+ GC-MSC-CM group (0.86±0.01 and 1.08±0.01, P<0.05). The expression levels of p-JAK2 and p-STAT3 in Mac+ IL-6/IL-8-blocked-GC-MSC-CM group (0.37±0.01 and 0.65±0.01, respectively) were both significantly lower than those of Mac+ GC-MSC-CM group (0.86±0.01 and 1.08±0.01, P<0.05). Conclusion: GC-MSCs promote the activation of JAK2/STAT3 signaling pathway in macrophages via high secretions of IL-6 and IL-8, which subsequently induce the macrophage polarization into a pro-tumor M2 subtype within gastric cancer microenvironment.


Assuntos
Humanos , Interleucina-6/genética , Interleucina-8/farmacologia , Janus Quinase 2/metabolismo , Macrófagos/metabolismo , Células-Tronco Mesenquimais , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Neoplasias Gástricas/patologia , Microambiente Tumoral
3.
Biol. Res ; 52: 29, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1011431

RESUMO

BACKGROUND: Acute kidney injury (AKI), which is mainly caused by sepsis, has high morbidity and mortality rates. CXCL8(3-72) K11R/G31P (G31P) can exert therapeutic effect on inflammatory diseases and malignancies. We aimed to investigate the effect and mechanism of G31P on septic AKI. METHODS: An AKI mouse model was established, and kidney injury was assessed by histological analysis. The contents of serum creatinine (SCr) and blood urea nitrogen (BUN) were measured by commercial kits, whereas neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) were detected by enzyme-linked immunosorbent assay (ELISA) kits. The expressions of CXCL8 in serum and kidney tissues were determined using ELISA and immunohistochemical analysis, respectively. Apoptosis rate of renal tissue was detected by terminal deoxynucleotidyl transfer-mediated dUTP nick end labeling (TUNEL) analysis. The expressions of inflammatory cytokines were measured by quantitative real-time PCR and Western blot, respectively. The apoptosis-related proteins, JAK2, STAT3, NF-κB and IκB were determined by Western blot. RESULTS: G31P could reduce the levels of SCr, BUN, HGAL and KIM-1 and inhibit the renal tissue injury in AKI mice. G31P was also found to suppress the serum and nephric CXCL8 expressions and attenuated the apoptosis rate. The levels of inflammatory cytokines, pro-apoptotic proteins were decreased, while the anti-apoptotic proteins were increased by G31P in AKI mice. G31P also inhibited the activation of JAK2, STAT3 and NF-κB in AKI mice. CONCLUSION: These results suggest that G31P could protect renal function and attenuate the septic AKI. Our findings provide a potential target for the treatment of AKI.


Assuntos
Animais , Masculino , Camundongos , NF-kappa B/metabolismo , Sepse/complicações , Fator de Transcrição STAT3/metabolismo , Janus Quinase 2/metabolismo , Injúria Renal Aguda/etiologia , Transdução de Sinais , Apoptose , Sepse/patologia , Modelos Animais de Doenças , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Camundongos Endogâmicos C57BL
4.
Indian J Cancer ; 2012 Jul-Sept; 49(3): 260-265
Artigo em Inglês | IMSEAR | ID: sea-144583

RESUMO

Janus Activated Kinase (JAK) 2 plays an important role in the pathogenesis of myelofibrosis (MF). Ruxolitinib (INCB018424, Jakafi) is a potent dual JAK1 and JAK2 inhibitor. In November 2011, it became approved by the US FDA for the treatment of intermediate or high-risk MF. This review shall outline the role of Ruxolitinib in the current management of MF and its potential future.


Assuntos
Humanos , Janus Quinase 1/imunologia , Janus Quinase 1/metabolismo , Janus Quinase 2/administração & dosagem , Janus Quinase 2/imunologia , Janus Quinase 2/metabolismo , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/patologia , Pirazóis/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA