Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Adicionar filtros








Intervalo de ano
1.
China Journal of Chinese Materia Medica ; (24): 349-355, 2023.
Artigo em Chinês | WPRIM | ID: wpr-970471

RESUMO

The study aimed to explore the effects of inoculation of Rhizophagus intraradices on the biomass, effective component content, and endogenous hormone content of Salvia miltiorrhiza through pot experiments. The number of leaves, plant height, dry weight of aboveground and underground parts, branch number, root number, root length, root diameter, and other biomass were mea-sured by weighing and counting methods. The content of salvianolic acid B, caffeic acid, rosmarinic acid, tanshinone Ⅰ, tanshinone Ⅱ_A, cryptotanshinone, and other effective components was determined by ultra-high performance liquid chromatography. The content of ABA and GA_3 was determined by triple quadrupole mass spectrometry. The correlations between biomass and effective components and between effective components and plant hormones ABA and GA_3 were analyzed. The results showed that R. intraradices significan-tly increased the aboveground dry weight, leaf number, and root number of S. miltiorrhiza by 0.24-0.65 times, respectively. The content of salvianolic acid B and rosmarinic acid in the aboveground part and the content of salvianolic acid B, caffeic acid, rosmarinic acid, tanshinone Ⅰ, and tanshinone Ⅱ_A in the underground part were significantly increased by 0.44-1.78 times, respectively. R. intraradices infection significantly increased the GA_3/ABA values of aboveground and underground parts by 3.82 and 76.47 times, respectively. The correlation analysis showed that caffeic acid, the effective component of the aboveground part, was significantly positively correlated with plant height, tanshinone Ⅱ_A, the effective component of the underground part, was significantly positively correlated with biomass root number, cryptotanshinone, and dry weight, while rosmarinic acid was significantly negatively correlated with dry weight. There were significant positive correlations between cryptotanshinone and ABA, tanshinone Ⅱ_A and ABA and GA_3, and caffeic acid and GA_3. In conclusion, R. intraradices can promote the accumulation of biomass and secondary metabolites of S. miltiorrhiza and regulate the balance between plant hormones ABA and GA_3, thereby promoting the growth of S. miltiorrhiza.


Assuntos
Salvia miltiorrhiza/química , Reguladores de Crescimento de Plantas/análise , Raízes de Plantas/química
2.
China Journal of Chinese Materia Medica ; (24): 2298-2306, 2023.
Artigo em Chinês | WPRIM | ID: wpr-981305

RESUMO

Tanshinones are one of the main effective components of Salvia miltiorrhiza, which play important roles in the treatment of cardiovascular diseases. Microbial heterogony production of tanshinones can provide a large number of raw materials for the production of traditional Chinese medicine(TCM) preparations containing S. miltiorrhiza, reduce the extraction cost, and relieve the pressure of clinical medication. The biosynthetic pathway of tanshinones contains multiple P450 enzymes, and the catalytic element with high efficiency is the basis of microbial production of tanshinones. In this study, the protein modification of CYP76AK1, a key P450-C20 hydroxylase in tanshinone pathway, was researched. The protein modeling methods SWISS-MODEL, Robetta, and AlphaFold2 were used, and the protein model was analyzed to obtain the reliable protein structure. The semi-rational design of mutant protein was carried out by molecular docking and homologous alignment. The key amino acid sites affecting the oxidation activity of CYP76AK1 were identified by molecular docking. The function of the obtained mutations was studied with yeast expression system, and the CYP76AK1 mutations with continuous oxidation function to 11-hydroxysugiol were obtained. Four key amino acid sites that affected the oxidation acti-vity were analyzed, and the reliability of three protein modeling methods was analyzed according to the mutation results. The effective protein modification sites of CYP76AK1 were reported for the first time in this study, which provides a catalytic element for different oxidation activities at C20 site for the study of the synthetic biology of tanshinones and lays a foundation for the analysis of the conti-nuous oxidation mechanism of P450-C20 modification.


Assuntos
Oxirredutases , Vias Biossintéticas , Simulação de Acoplamento Molecular , Reprodutibilidade dos Testes , Salvia miltiorrhiza/química , Aminoácidos/metabolismo , Raízes de Plantas/genética
3.
Acta cir. bras ; 37(7): e370701, 2022. graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1402968

RESUMO

Purpose: Tanshinone IIA is a well-known lipophilic active constituent refined from traditional Chinese medicines, danshen. It has been previously demonstrated to possess various biological properties, including anti-inflammatory, antioxidant, promoting angiogenesis effect and so on. However, the mechanism of tanshinone IIA on myocardial ischemia-reperfusion injury (MI/RI) remains unclear. In this study, we investigated the effect of tanshinone IIA on MI/RI. Methods: MI/RI rat models were set up. Echocardiographic evaluation and hematoxylin and eosin staining were performed to analyze the cardiac function and morphology of MI/RI. Western blot was conducted for the detection of protein expression of pyrin domain containing 3 (NLRP3) and caspase-1 in heart tissues. Flow cytometry and real-time polymerase chain reaction were used for the detection of proinflammatory cytokines and Th17 cells differentiation. Results: We found that tanshinone IIA alleviated the myocardial damage of MI/RI, ameliorated the overall and local inflammatory reaction, and produced a cardioprotective effect by inhibiting of NLRP3 inflammasome activation and Th17/Treg cells differentiation. Conclusions: Our results highlighted the cardio-protective effect of tanshinone IIA on MI/RI and uncovered its underlying mechanism related to the NLRP3 inflammasome inhibition and the modulation of Th17/Treg cells differentiation.


Assuntos
Animais , Ratos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Isquemia Miocárdica/tratamento farmacológico , Salvia miltiorrhiza/química , Células Th17 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Medicina Tradicional Chinesa
4.
China Journal of Chinese Materia Medica ; (24): 2465-2473, 2022.
Artigo em Chinês | WPRIM | ID: wpr-928126

RESUMO

Physical attributes of Chinese herbal extracts are determined by their chemical components, and the physical and chemical attributes jointly affect the preparation process performance and the final product quality. Therefore, in order to improve the quality control of Chinese herbal extracts, we should comprehensively study the batch-to-batch consistency of physical and chemical attributes as well as the correlations between them. This paper first explored the physical attributes affecting the preparation process performance of the compound Danshen extract and developed a method for characterizing the texture attributes. With such main chemical components as water, phenolic acids, saponins, and saccharides and texture, rheology, and other physical attributes taken into consideration, the batch-to-batch quality fluctuation of products from different production lines and time was analyzed by principal components analysis(PCA). Finally, the correlation and partial least squares(PLS) analysis was conducted, and the regression equation was established. The fitting result of the PLS model for dynamic viscosity was satisfying(R~2Y=0.857, Q~2=0.793), suggesting that the chemical components could be adjusted by the component transfer rate in the extraction process, the impurity removal rate in the alcohol precipitation process, and the water retention rate of the concentration process to meet the control of the extract dynamic viscosity. This study clarified the correlations between physical and chemical attributes of the compound Danshen extract and established a method for controlling its physical attributes based on process regulation, which would provide reference for improving the quality control of Chinese herbal extracts.


Assuntos
Medicamentos de Ervas Chinesas/química , Controle de Qualidade , Salvia miltiorrhiza/química , Água
5.
China Journal of Chinese Materia Medica ; (24): 6530-6541, 2021.
Artigo em Chinês | WPRIM | ID: wpr-921813

RESUMO

To reveal the rationality of compatibility of Salviae Miltiorrhizae Radix et Rhizoma(SMRR) and Puerariae Lobatae Radix(PLR) from the perspective of pharmacokinetics, this study established a UPLC-MS/MS method for quantitative determination of PLR flavonoids(3'-hydroxy puerarin, puerarin, puerarin 6″-O-xyloside, 3'-methoxy puerarin, puerarin apioside) and salvianolic acids and tanshinones(salvianolic acid B, cryptotanshinone, and tanshinone Ⅱ_A) in plasma of rats. Rats were given SMRR extract, PLR extract, and SMRR-PLR extract by gavage and then plasma was collected at different time. UPLC separation was performed under the following conditions: Eclipse C_(18) column(2.1 mm×50 mm, 1.8 μm), 0.1% formic acid in water(A)-0.1% formic acid in acetonitrile(B) as mobile phase for gradient elution. Conditions for MS are as below: multiple reaction monitoring(MRM), ESI~(+/-). Comprehensive validation of the UPLC-MS/MS method(specifically, from the aspects of calibration curve, precision, accuracy, repeatability, stability, matrix effect, extract recovery) was performed and the result demonstrated that it complied with quantitative analysis requirements for biological samples. Compared with SMRR extract alone or PLR extract alone, SMRR-PLR extract significantly increased the AUC and C_(max) of PLR flavonoids and tanshinones in rat plasma, suggesting that the combination of SMRR and PLR promoted the absorption of the above components. The underlying mechanism needs to be further studied.


Assuntos
Animais , Ratos , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/farmacocinética , Raízes de Plantas/química , Pueraria/química , Rizoma/química , Salvia miltiorrhiza/química , Espectrometria de Massas em Tandem
6.
China Journal of Chinese Materia Medica ; (24): 548-554, 2020.
Artigo em Chinês | WPRIM | ID: wpr-1008537

RESUMO

Study the suitability of organic film for salvianolic acid in the ultrafiltration process of Danshen Dizhuye. UPLC was used to analyze the migration of nine phenolic active ingredients in Danshen Dizhuye during ultrafiltration of PES hollow fiber membrane and PS hollow fiber membrane. The structural composition of multi-components was analyzed by three different batches of Danshen Dizhuye before and after ultrafiltration of the two membranes. The results showed that 9 phenolic active ingredients in Danshen Dizhuye did not change significantly after ultrafiltration through PES membrane. However, after ultrafiltration through PS membrane, the content of sodium danshensu, protocatechualdehyde, caffeic acid, 3-hydroxy-4-methoxycinnamic acid and rosmarinic acid in Danshen Dizhuye did not change significantly, while salvianolic acid D, salvianolic acid B and lithospermic acid decreased by about 20%, and the content of salvianolic acid A decreased significantly. The final content in equilibrium was only about 20% of the original solution. Therefore, an in-depth study on the migration particularity of salvianolic acid A in ultrafiltration membrane was the focuse. The results showed that the loss of salvianolic acid A was caused by both membranes during ultrafiltration, and salvianolic acid A was lost more in PS membrane. When the membrane was washed and regenerated, it was found that salvianolic acid A was detected in the ethanol washing solution, but not in the washing liquid, indicating that the loss of salvianolic acid A during the ultrafiltration was mainly adsorptive action. The results suggested that the migration of phenolic active ingredients in Danshen Dizhuye during the membrane ultrafiltration process did not completely follow the molecular weight passing rule of the membrane pore size. At the same time, it may be affected by factors, such as the structure of the membrane material, and the interaction between the membrane structure and the structure of components, and exhibit different migration behaviors during the ultrafiltration of the membrane.


Assuntos
Alcenos/química , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Polifenóis/química , Salvia miltiorrhiza/química , Ultrafiltração
7.
China Journal of Chinese Materia Medica ; (24): 1090-1096, 2020.
Artigo em Chinês | WPRIM | ID: wpr-1008477

RESUMO

There were significant differences in phenolic acid content between fresh and dried Salvia miltiorrhiza before and after drying. That is to say, the content of phenolic acid in S. miltiorrhiza significantly increased with the increase of dehydration during the drying process.In order to investigate the differences and transformation of free and bound phenolic acids before and after the drying process of S.miltiorrhiza, we studied hydrolysis method, hydrolysates and hydrolysis regularity of phenolic acids in S.miltiorrhiza. UPLC method was used to determine four main hydrolysates of bound phenolic acids, namely danshensu, caffeic acid dimer(SMND-309), caffeic acid, przewalskinic acid A(prolithosperic acid), and three main free phenolic acids in S.miltiorrhiza, namely rosmarinic acid, lithospermic acid, salvianolic acid B. The results of the acid-base hydrolysis experiment of salvianolic acid showed that the alkaline hydrolysis effect was significantly better than acid hydrolysis. The optimal alkaline hydrolysis condition was hydrolysis at 70 ℃ for 4 h with 2 mol·L~(-1) NaOH solution containing 1% ascorbic acid(Vit C). The hydrolysates of free phenolic acids were the same with the hydrolysates of bound phenolic acids. Fresh S.miltiorrhiza contains a low level of free phenolic acids and a high level of bound phenolic acids, which were exactly opposite to dried S.miltiorrhiza. It was suggested that a large amount of bound phenolic acids was accumulated during the growth of S.miltiorrhiza. These bound phenolic acids were coupled with polysaccharides on the cytoderm through ester bonds to form insoluble phenolic acids, which was not easy to be detected by conventional methods. However, during drying and dehydration processes, the bound phenolic acids were converted to a large amount of free phenolic acids under the action of the relevant enzyme.


Assuntos
Dessecação , Hidroxibenzoatos/análise , Salvia miltiorrhiza/química
8.
China Journal of Chinese Materia Medica ; (24): 5446-5450, 2019.
Artigo em Chinês | WPRIM | ID: wpr-1008419

RESUMO

The purpose of this study was to investigate the feasibility of the salvianolic acids reference extract for quality control for Salvia miltiorrhiza and salvianolic acids for injection. An Agilent ZORBAX SB-C18( 4. 6 mm×250 mm,5 μm) column was used with mobile phase consisting of 0. 1% formic acid-water and 0. 1% formic acid-acetonitrile in gradient elution procedure. The column temperature was 30 ℃; the flow rate was 1 m L·min-1; and the detection wavelength was 288 nm. The content of rosmarinic acid,lithospermic acid and salvianolic acid B in S. miltiorrhiza was determined by using the salvianolic acids reference extract as control substance. The content of caffeic acid,salvianolic acid E,rosmarinic acid,lithospermic acid,salvianolic acid B,and salvianolic acid Y in the salvianolic acids for injection was also determined. The linear relationship between chemicals was good( r>0. 998 9),and the injection precision RSD was 0. 30%-0. 90%. The sexual RSD is between 1. 4% and 3. 0%,and the RSD of the reproducibility of the extract is between 2. 1% and 5. 2%. The recovery rate of the three components in S. miltiorrhiza was 96. 80%-99. 20%,and the recovery rate of the six components in salvianolic acids for injection was 88. 90%-107. 5%. The solution of S. miltiorrhiza and salvianolic acids for injection were stable within 48 h. A total of 8 batches of S. miltiorrhiza and injection were determined by the reference extract,and the difference was smaller than that measured by the monomer control. This study preliminarily verified that the salvianolic acids reference extract can be used as a substitute for the monomer control for the quality control of S. miltiorrhiza and salvianolic acids for injection.


Assuntos
Alcenos/análise , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/normas , Polifenóis/análise , Controle de Qualidade , Reprodutibilidade dos Testes , Salvia miltiorrhiza/química
9.
Experimental & Molecular Medicine ; : 133-137, 2005.
Artigo em Inglês | WPRIM | ID: wpr-90138

RESUMO

In the course of screening of angiogenesis inhibitor from natural products, cryptotanshinone from Salvia miltiorrhiza was isolated as a potent small molecule inhibitor of angiogenesis. Cryptotanshinone inhibits bFGF-induced angiogenesis of BAECs at ten micromolar ranges in vitro without cytotoxicity. Tanshinone IIA, another tanshinone isolated from S. miltiorrhiza, which is structurally very similar to cryptotanshinone except C-15 position of dihydrofuran ring does not inhibit angiogenesis induced by bFGF. These results demonstrate that cryptotanshinone is a new anti-angiogenic agent and double bond at C-15 position of the dihydrofuran ring plays a crucial role in the activity.


Assuntos
Animais , Bovinos , Humanos , Inibidores da Angiogênese/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Medicamentos de Ervas Chinesas/química , Células Endoteliais/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Fenantrenos/química , Raízes de Plantas/química , Salvia miltiorrhiza/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA