Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add filters

Document Type
Year range
1.
Biochemistry (Mosc) ; 86(7): 800-817, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1594970

ABSTRACT

COVID-19, a new human respiratory disease that has killed nearly 3 million people in a year since the start of the pandemic, is a global public health challenge. Its infectious agent, SARS-CoV-2, differs from other coronaviruses in a number of structural features that make this virus more pathogenic and transmissible. In this review, we discuss some important characteristics of the main SARS-CoV-2 surface antigen, the spike (S) protein, such as (i) ability of the receptor-binding domain (RBD) to switch between the "standing-up" position (open pre-fusion conformation) for receptor binding and the "lying-down" position (closed pre-fusion conformation) for immune system evasion; (ii) advantage of a high binding affinity of the RBD open conformation to the human angiotensin-converting enzyme 2 (ACE2) receptor for efficient cell entry; and (iii) S protein preliminary activation by the intracellular furin-like proteases for facilitation of the virus spreading across different cell types. We describe interactions between the S protein and cellular receptors, co-receptors, and antagonists, as well as a hypothetical mechanism of the homotrimeric spike structure destabilization that triggers the fusion of the viral envelope with the cell membrane at physiological pH and mediates the viral nucleocapsid entry into the cytoplasm. The transition of the S protein pre-fusion conformation to the post-fusion one on the surface of virions after their treatment with some reagents, such as ß-propiolactone, is essential, especially in relation to the vaccine production. We also compare the COVID-19 pathogenesis with that of severe outbreaks of "avian" influenza caused by the A/H5 and A/H7 highly pathogenic viruses and discuss the structural similarities between the SARS-CoV-2 S protein and hemagglutinins of those highly pathogenic strains. Finally, we touch on the prospective and currently used COVID-19 antiviral and anti-pathogenetic therapeutics, as well as recently approved conventional and innovative COVID-19 vaccines and their molecular and immunological features.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/epidemiology , COVID-19/genetics , COVID-19/metabolism , Humans , Influenza A virus/chemistry , Influenza A virus/genetics , Influenza A virus/metabolism , Influenza, Human/epidemiology , Influenza, Human/genetics , Influenza, Human/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
2.
Aging (Albany NY) ; 13(23): 24931-24942, 2021 12 12.
Article in English | MEDLINE | ID: covidwho-1573020

ABSTRACT

Since the Coronavirus 19 (COVID-19) pandemic, several SARS-CoV-2 variants of concern (SARS-CoV-2 VOC) have been reported. The B.1.1.7 variant has been associated with increased mortality and transmission risk. Furthermore, cluster and possible co-infection cases could occur in the next influenza season or COVID-19 pandemic wave, warranting efficient diagnosis and treatment decision making. Here, we aimed to detect SARS-CoV-2 and other common respiratory viruses using multiplex RT-PCR developed on the LabTurbo AIO 48 open system. We performed a multicenter study to evaluate the performance and analytical sensitivity of the LabTurbo AIO 48 system for SARS-CoV-2, influenza A/B, and respiratory syncytial virus (RSV) using 652 nasopharyngeal swab clinical samples from patients. The LabTurbo AIO 48 system demonstrated a sensitivity of 9.4 copies/per PCR for N2 of SARS-CoV-2; 24 copies/per PCR for M of influenza A and B; and 24 copies/per PCR for N of RSV. The assay presented consistent performance in the multicenter study. The multiplex RT-PCR applied on the LabTurbo AIO 48 open platform provided highly sensitive, robust, and accurate results and enabled high-throughput detection of B.1.1.7, influenza A/B, and RSV with short turnaround times. Therefore, this automated molecular diagnostic assay could enable streamlined testing if COVID-19 becomes a seasonal disease.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Influenza, Human/diagnosis , Multiplex Polymerase Chain Reaction/methods , Respiratory Syncytial Virus Infections/diagnosis , Adult , Aged , COVID-19/virology , Female , Humans , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza, Human/virology , Influenzavirus B/genetics , Influenzavirus B/isolation & purification , Male , Middle Aged , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Viruses/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Young Adult
3.
J Korean Med Sci ; 36(48): e328, 2021 Dec 13.
Article in English | MEDLINE | ID: covidwho-1572278

ABSTRACT

BACKGROUND: In the coronavirus disease 2019 (COVID-19) pandemic era, the simultaneous detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza virus (Flu), and respiratory syncytial virus (RSV) is important in the rapid differential diagnosis in patients with respiratory symptoms. Three multiplex real-time reverse transcription polymerase chain reaction (rRT-PCR) assays have been recently developed commercially in Korea: PowerChek™ SARS-CoV-2, Influenza A&B Multiplex Real-time PCR Kit (PowerChek; KogeneBiotech); STANDARD™ M Flu/SARS-CoV-2 Real-time Detection Kit (STANDARD M; SD BioSensor); and Allplex™ SARS-CoV-2/FluA/FluB/RSV Assay (Allplex; Seegene). We evaluated the analytical and clinical performances of these kits. METHODS: A limit of detection tests were performed and cross-reactivity analysis was executed using clinical respiratory samples. Ninety-seven SARS-CoV-2-positive, 201 SARS-CoV-2-negative, 71 influenza A-positive, 50 influenza B-positive, 78 RSV-positive, and 207 other respiratory virus-positive nasopharyngeal swabs were tested using the three assays. The AdvanSure™ respiratory viruses rRT-PCR assay (AdvanSure; LG Life Sciences) was used as a comparator assay for RSV. RESULTS: Except in influenza B, in SARS-CoV-2 and influenza A, there were no significant differences in detecting specific genes of the viruses among the three assays. All three kits did not cross-react with common respiratory viruses. All three kits had greater than 92% positive percent agreement and negative percent agreement and ≥ 0.95 kappa value in the detection of SARS-CoV-2 and flu A/B. Allplex detected RSV more sensitively than AdvanSure. CONCLUSION: The overall performance of three multiplex rRT-PCR assays for the concurrent detection of SARS-CoV-2, influenza A/B, and RSV was comparable. These kits will promote prompt differential diagnosis of COVID-19, influenza, and RSV infection in the COVID-19 pandemic era.


Subject(s)
COVID-19/diagnosis , Influenza, Human/diagnosis , Multiplex Polymerase Chain Reaction/methods , Nasopharynx/virology , RNA, Viral/analysis , Respiratory Syncytial Virus Infections/diagnosis , COVID-19/virology , Cross Reactions , Humans , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza B virus/genetics , Influenza B virus/isolation & purification , Influenza, Human/virology , Limit of Detection , Nucleocapsid Proteins/genetics , Polyproteins/genetics , RNA, Viral/metabolism , Reagent Kits, Diagnostic , Republic of Korea , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Viral Matrix Proteins/genetics , Viral Proteins/genetics
4.
JCI Insight ; 6(22)2021 11 22.
Article in English | MEDLINE | ID: covidwho-1528615

ABSTRACT

BACKGROUNDInfluenza A virus (IAV) and SARS-CoV-2 are pandemic viruses causing millions of deaths, yet their clinical manifestations are distinctly different.METHODSWith the hypothesis that upper airway immune and epithelial cell responses are also distinct, we performed single-cell RNA sequencing (scRNA-Seq) on nasal wash cells freshly collected from adults with either acute COVID-19 or influenza or from healthy controls. We focused on major cell types and subtypes in a subset of donor samples.ResultsNasal wash cells were enriched for macrophages and neutrophils for both individuals with influenza and those with COVID-19 compared with healthy controls. Hillock-like epithelial cells, M2-like macrophages, and age-dependent B cells were enriched in COVID-19 samples. A global decrease in IFN-associated transcripts in neutrophils, macrophages, and epithelial cells was apparent in COVID-19 samples compared with influenza samples. The innate immune response to SARS-CoV-2 appears to be maintained in macrophages, despite evidence for limited epithelial cell immune sensing. Cell-to-cell interaction analyses revealed a decrease in epithelial cell interactions in COVID-19 and highlighted differences in macrophage-macrophage interactions for COVID-19 and influenza.ConclusionsOur study demonstrates that scRNA-Seq can define host and viral transcriptional activity at the site of infection and reveal distinct local epithelial and immune cell responses for COVID-19 and influenza that may contribute to their divergent disease courses.FundingMassachusetts Consortium on Pathogen Readiness, the Mathers Foundation, and the Department of Defense (W81XWH2110029) "COVID-19 Expansion for AIRe Program."


Subject(s)
COVID-19 , Immunity, Innate , Influenza A virus , Influenza, Human , Macrophages , RNA-Seq , SARS-CoV-2 , Adult , COVID-19/genetics , COVID-19/immunology , Female , Humans , Influenza A virus/genetics , Influenza A virus/immunology , Influenza, Human/genetics , Influenza, Human/immunology , Macrophages/immunology , Macrophages/virology , Male , Nasal Lavage , SARS-CoV-2/genetics , SARS-CoV-2/immunology
5.
Sci Rep ; 11(1): 22164, 2021 11 12.
Article in English | MEDLINE | ID: covidwho-1514425

ABSTRACT

The influenza A non-structural protein 1 (NS1) is known for its ability to hinder the synthesis of type I interferon (IFN) during viral infection. Influenza viruses lacking NS1 (ΔNS1) are under clinical development as live attenuated human influenza virus vaccines and induce potent influenza virus-specific humoral and cellular adaptive immune responses. Attenuation of ΔNS1 influenza viruses is due to their high IFN inducing properties, that limit their replication in vivo. This study demonstrates that pre-treatment with a ΔNS1 virus results in an antiviral state which prevents subsequent replication of homologous and heterologous viruses, preventing disease from virus respiratory pathogens, including SARS-CoV-2. Our studies suggest that ΔNS1 influenza viruses could be used for the prophylaxis of influenza, SARS-CoV-2 and other human respiratory viral infections, and that an influenza virus vaccine based on ΔNS1 live attenuated viruses would confer broad protection against influenza virus infection from the moment of administration, first by non-specific innate immune induction, followed by specific adaptive immunity.


Subject(s)
Influenza A virus/immunology , Influenza Vaccines/therapeutic use , Interferon Type I/immunology , Orthomyxoviridae Infections/prevention & control , Vaccines, Attenuated/therapeutic use , Viral Nonstructural Proteins/immunology , Adaptive Immunity , Animals , COVID-19/immunology , COVID-19/prevention & control , Chickens , Gene Deletion , Humans , Influenza A virus/genetics , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Mice , Mice, Inbred C57BL , Orthomyxoviridae Infections/immunology , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Viral Nonstructural Proteins/genetics
6.
J Virol ; 95(15): e0053021, 2021 07 12.
Article in English | MEDLINE | ID: covidwho-1486507

ABSTRACT

Elicitation of lung tissue-resident memory CD8 T cells (TRMs) is a goal of T cell-based vaccines against respiratory viral pathogens, such as influenza A virus (IAV). C-C chemokine receptor type 2 (CCR2)-dependent monocyte trafficking plays an essential role in the establishment of CD8 TRMs in lungs of IAV-infected mice. Here, we used a combination adjuvant-based subunit vaccine strategy that evokes multifaceted (TC1/TC17/TH1/TH17) IAV nucleoprotein-specific lung TRMs to determine whether CCR2 and monocyte infiltration are essential for vaccine-induced TRM development and protective immunity to IAV in lungs. Following intranasal vaccination, neutrophils, monocytes, conventional dendritic cells (DCs), and monocyte-derived dendritic cells internalized and processed vaccine antigen in lungs. We found that basic leucine zipper ATF-like transcription factor 3 (BATF3)-dependent DCs were essential for eliciting T cell responses, but CCR2 deficiency enhanced the differentiation of CD127hi, KLRG-1lo, OX40+ve CD62L+ve, and mucosally imprinted CD69+ve CD103+ve effector and memory CD8 T cells in lungs and airways of vaccinated mice. Mechanistically, increased development of lung TRMs induced by CCR2 deficiency was linked to dampened expression of T-bet but not altered TCF-1 levels or T cell receptor signaling in CD8 T cells. T1/T17 functional programming, parenchymal localization of CD8/CD4 effector and memory T cells, recall T cell responses, and protective immunity to a lethal IAV infection were unaffected in CCR2-deficient mice. Taken together, we identified a negative regulatory role for CCR2 and monocyte trafficking in mucosal imprinting and differentiation of vaccine-induced TRMs. Mechanistic insights from this study may aid the development of T-cell-based vaccines against respiratory viral pathogens, including IAV and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IMPORTANCE While antibody-based immunity to influenza A virus (IAV) is type and subtype specific, lung- and airway-resident memory T cells that recognize conserved epitopes in the internal viral proteins are known to provide heterosubtypic immunity. Hence, broadly protective IAV vaccines need to elicit robust T cell memory in the respiratory tract. We have developed a combination adjuvant-based IAV nucleoprotein vaccine that elicits strong CD4 and CD8 T cell memory in lungs and protects against H1N1 and H5N1 strains of IAV. In this study, we examined the mechanisms that control vaccine-induced protective memory T cells in the respiratory tract. We found that trafficking of monocytes into lungs might limit the development of antiviral lung-resident memory T cells following intranasal vaccination. These findings suggest that strategies that limit monocyte infiltration can potentiate vaccine-induced frontline T-cell immunity to respiratory viruses, such as IAV and SARS-CoV-2.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunity, Mucosal , Immunologic Memory , Influenza A virus/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Receptors, CCR2/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Influenza A virus/genetics , Influenza Vaccines/genetics , Influenza Vaccines/pharmacology , Lung/immunology , Mice , Mice, Knockout , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/prevention & control , Receptors, CCR2/genetics
7.
PLoS Comput Biol ; 17(9): e1009357, 2021 09.
Article in English | MEDLINE | ID: covidwho-1470651

ABSTRACT

Cell culture-derived defective interfering particles (DIPs) are considered for antiviral therapy due to their ability to inhibit influenza A virus (IAV) production. DIPs contain a large internal deletion in one of their eight viral RNAs (vRNAs) rendering them replication-incompetent. However, they can propagate alongside their homologous standard virus (STV) during infection in a competition for cellular and viral resources. So far, experimental and modeling studies for IAV have focused on either the intracellular or the cell population level when investigating the interaction of STVs and DIPs. To examine these levels simultaneously, we conducted a series of experiments using highly different multiplicities of infections for STVs and DIPs to characterize virus replication in Madin-Darby Canine Kidney suspension cells. At several time points post infection, we quantified virus titers, viable cell concentration, virus-induced apoptosis using imaging flow cytometry, and intracellular levels of vRNA and viral mRNA using real-time reverse transcription qPCR. Based on the obtained data, we developed a mathematical multiscale model of STV and DIP co-infection that describes dynamics closely for all scenarios with a single set of parameters. We show that applying high DIP concentrations can shut down STV propagation completely and prevent virus-induced apoptosis. Interestingly, the three observed viral mRNAs (full-length segment 1 and 5, defective interfering segment 1) accumulated to vastly different levels suggesting the interplay between an internal regulation mechanism and a growth advantage for shorter viral RNAs. Furthermore, model simulations predict that the concentration of DIPs should be at least 10000 times higher than that of STVs to prevent the spread of IAV. Ultimately, the model presented here supports a comprehensive understanding of the interactions between STVs and DIPs during co-infection providing an ideal platform for the prediction and optimization of vaccine manufacturing as well as DIP production for therapeutic use.


Subject(s)
Defective Viruses , Influenza A virus , Models, Biological , Orthomyxoviridae Infections/virology , Virus Replication/physiology , Animals , Antiviral Agents , Cell Culture Techniques , Defective Viruses/chemistry , Defective Viruses/genetics , Defective Viruses/pathogenicity , Dogs , Influenza A virus/chemistry , Influenza A virus/genetics , Influenza A virus/pathogenicity , Madin Darby Canine Kidney Cells , RNA, Viral/genetics
8.
Virol J ; 18(1): 202, 2021 10 09.
Article in English | MEDLINE | ID: covidwho-1463255

ABSTRACT

BACKGROUND: The effect of SARS-CoV-2 on existing respiratory pathogens in circulation remains uncertain. This study aimed to assess the impact of SARS-CoV-2 on the prevalence of respiratory pathogens among hospitalized children. METHODS: This study enrolled hospitalized children with acute respiratory infections in Shenzhen Children's Hospital from September to December 2019 (before the COVID-19 epidemic) and those from September to December 2020 (during the COVID-19 epidemic). Nasopharyngeal swabs were collected, and respiratory pathogens were detected using multiplex PCR. The absolute case number and detection rates of 11 pathogens were collected and analyzed. RESULTS: A total of 5696 children with respiratory tract infection received multiplex PCR examination for respiratory pathogens: 2298 from September to December 2019 and 3398 from September to December 2020. At least one pathogen was detected in 1850 (80.5%) patients in 2019, and in 2380 (70.0%) patients in 2020; the detection rate in 2020 was significantly lower than that in 2019.The Influenza A (InfA) detection rate was 5.6% in 2019, but 0% in 2020. The detection rates of Mycoplasma pneumoniae, Human adenovirus, and Human rhinovirus also decreased from 20% (460), 8.9% (206), and 41.8% (961) in 2019 to 1.0% (37), 2.1% (77), and 25.6% (873) in 2020, respectively. In contrast, the detection rates of Human respiratory syncytial virus, Human parainfluenza virus, and Human metapneumovirus increased from 6.6% (153), 9.9% (229), and 0.5% (12) in 2019 to 25.6% (873), 15.5% (530), and 7.2% (247) in 2020, respectively (p < 0.0001). CONCLUSIONS: Successful containment of seasonal influenza as a result of COVID-19 control measures will ensure we are better equipped to deal with future outbreaks of both influenza and COVID-19.Caused by virus competition, the detection rates of Human respiratory syncytial virus, Human parainfluenza virus, and Human metapneumovirus increased in Shenzhen,that reminds us we need to take further monitoring and preventive measures in the next epidemic season.


Subject(s)
Antibiosis , COVID-19/epidemiology , Respiratory Tract Diseases/epidemiology , SARS-CoV-2/isolation & purification , Adenoviruses, Human/genetics , Adenoviruses, Human/isolation & purification , Adolescent , COVID-19/virology , Child , Child, Hospitalized , Child, Preschool , China , Enterovirus/genetics , Enterovirus/isolation & purification , Female , Humans , Infant , Influenza A virus/genetics , Influenza A virus/isolation & purification , Male , Metapneumovirus/genetics , Metapneumovirus/isolation & purification , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/isolation & purification , Nasopharynx/microbiology , Nasopharynx/virology , Prevalence , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Viruses/isolation & purification , Respiratory Tract Diseases/microbiology , Respiratory Tract Diseases/virology , Respirovirus/genetics , Respirovirus/isolation & purification , SARS-CoV-2/genetics
9.
J Med Virol ; 93(10): 5998-6007, 2021 10.
Article in English | MEDLINE | ID: covidwho-1432442

ABSTRACT

In the context of the coronavirus disease 2019 pandemic, we investigated the epidemiological and clinical characteristics of a young patient infected by avian influenza A (H5N6) virus in Anhui Province, East China, and analyzed genomic features of the pathogen in 2020. Through the cross-sectional investigation of external environment monitoring (December 29-31, 2020), 1909 samples were collected from Fuyang City. It was found that the positive rate of H5N6 was higher than other areas obviously in Tianma poultry market, where the case appeared. In addition, dual coinfections were detected with a 0.057% polymerase chain reaction positive rate the surveillance years. The virus was the clade 2.3.4.4, which was most likely formed by genetic reassortment between H5N6 and H9N2 viruses. This study found that the evolution rates of the hemagglutinin and neuraminidase genes of the virus were higher than those of common seasonal influenza viruses. The virus was still highly pathogenic to poultry and had a preference for avian receptor binding.


Subject(s)
COVID-19/epidemiology , Influenza A virus/isolation & purification , Influenza in Birds/virology , Influenza, Human/virology , Animals , Child, Preschool , China , Female , Genome, Viral/genetics , Humans , Influenza A virus/classification , Influenza A virus/genetics , Influenza, Human/diagnosis , Mutation , Phylogeny , Poultry/virology , Reassortant Viruses/classification , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , SARS-CoV-2 , Viral Proteins/genetics
10.
Microbiol Spectr ; 9(2): e0025721, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1410327

ABSTRACT

Human-to-human transmission of viruses, such as influenza viruses and coronaviruses, can promote virus evolution and the emergence of new strains with increased potential for creating pandemics. Clinical studies analyzing how a particular type of virus progressively evolves new traits, such as resistance to antiviral therapies, as a result of passing between different human hosts are difficult to carry out because of the complexity, scale, and cost of the challenge. Here, we demonstrate that spontaneous evolution of influenza A virus through both mutation and gene reassortment can be reconstituted in vitro by sequentially passaging infected mucus droplets between multiple human lung airway-on-a-chip microfluidic culture devices (airway chips). Modeling human-to-human transmission of influenza virus infection on chips in the continued presence of the antiviral drugs amantadine or oseltamivir led to the spontaneous emergence of clinically prevalent resistance mutations, and strains that were resistant to both drugs were identified when they were administered in combination. In contrast, we found that nafamostat, an inhibitor targeting host serine proteases, did not induce viral resistance. This human preclinical model may be useful for studying viral evolution in vitro and identifying potential influenza virus variants before they appear in human populations, thereby enabling preemptive design of new and more effective vaccines and therapeutics. IMPORTANCE The rapid evolution of viruses, such as influenza viruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is challenging the use and development of antivirals and vaccines. Studies of within-host viral evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape viral global evolution as well as development of better antivirals and vaccines. However, little is known about how viral evolution of resistance to antivirals occurs clinically due to the lack of preclinical models that can faithfully model influenza infection in humans. Our study shows that influenza viral evolution through mutation or gene reassortment can be recapitulated in a human lung airway-on-a-chip (airway chip) microfluidic culture device that can faithfully recapitulate the influenza infection in vitro. This approach is useful for studying within-host viral evolution, evaluating viral drug resistance, and identifying potential influenza virus variants before they appear in human populations, thereby enabling the preemptive design of new and more effective vaccines and therapeutics.


Subject(s)
Drug Resistance, Viral/genetics , Evolution, Molecular , Influenza A virus/drug effects , Influenza A virus/genetics , Lab-On-A-Chip Devices , Amantadine/pharmacology , Antiviral Agents/pharmacology , Benzamidines/pharmacology , Guanidines/pharmacology , Humans , Influenza, Human/drug therapy , Influenza, Human/transmission , Lung/virology , Microfluidics , Oseltamivir/pharmacology , SARS-CoV-2/genetics
11.
ACS Chem Biol ; 15(9): 2331-2337, 2020 09 18.
Article in English | MEDLINE | ID: covidwho-1387140

ABSTRACT

We report on using the synthetic aminoadamantane-CH2-aryl derivatives 1-6 as sensitive probes for blocking M2 S31N and influenza A virus (IAV) M2 wild-type (WT) channels as well as virus replication in cell culture. The binding kinetics measured using electrophysiology (EP) for M2 S31N channel are very dependent on the length between the adamantane moiety and the first ring of the aryl headgroup realized in 2 and 3 and the girth and length of the adamantane adduct realized in 4 and 5. Study of 1-6 shows that, according to molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations, all bind in the M2 S31N channel with the adamantyl group positioned between V27 and G34 and the aryl group projecting out of the channel with the phenyl (or isoxazole in 6) embedded in the V27 cluster. In this outward binding configuration, an elongation of the ligand by only one methylene in rimantadine 2 or using diamantane or triamantane instead of adamantane in 4 and 5, respectively, causes incomplete entry and facilitates exit, abolishing effective block compared to the amantadine derivatives 1 and 6. In the active M2 S31N blockers 1 and 6, the phenyl and isoxazolyl head groups achieve a deeper binding position and high kon/low koff and high kon/high koff rate constants, compared to inactive 2-5, which have much lower kon and higher koff. Compounds 1-5 block the M2 WT channel by binding in the longer area from V27-H37, in the inward orientation, with high kon and low koff rate constants. Infection of cell cultures by influenza virus containing M2 WT or M2 S31N is inhibited by 1-5 or 1-4 and 6, respectively. While 1 and 6 block infection through the M2 block mechanism in the S31N variant, 2-4 may block M2 S31N virus replication in cell culture through the lysosomotropic effect, just as chloroquine is thought to inhibit SARS-CoV-2 infection.


Subject(s)
Adamantane/pharmacology , Influenza A virus/drug effects , Influenza, Human/prevention & control , Ion Channels/antagonists & inhibitors , Molecular Probes/chemistry , Viral Matrix Proteins/antagonists & inhibitors , Adamantane/analogs & derivatives , Adamantane/chemistry , Adamantane/metabolism , Betacoronavirus/drug effects , Binding Sites , COVID-19 , Cells, Cultured , Chloroquine/pharmacology , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Genetic Variation , Humans , Influenza A virus/chemistry , Influenza A virus/genetics , Influenza, Human/drug therapy , Kinetics , Molecular Probes/metabolism , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Protein Binding , SARS-CoV-2 , Structure-Activity Relationship , Virus Replication/drug effects
12.
J Med Virol ; 93(10): 5998-6007, 2021 10.
Article in English | MEDLINE | ID: covidwho-1298504

ABSTRACT

In the context of the coronavirus disease 2019 pandemic, we investigated the epidemiological and clinical characteristics of a young patient infected by avian influenza A (H5N6) virus in Anhui Province, East China, and analyzed genomic features of the pathogen in 2020. Through the cross-sectional investigation of external environment monitoring (December 29-31, 2020), 1909 samples were collected from Fuyang City. It was found that the positive rate of H5N6 was higher than other areas obviously in Tianma poultry market, where the case appeared. In addition, dual coinfections were detected with a 0.057% polymerase chain reaction positive rate the surveillance years. The virus was the clade 2.3.4.4, which was most likely formed by genetic reassortment between H5N6 and H9N2 viruses. This study found that the evolution rates of the hemagglutinin and neuraminidase genes of the virus were higher than those of common seasonal influenza viruses. The virus was still highly pathogenic to poultry and had a preference for avian receptor binding.


Subject(s)
COVID-19/epidemiology , Influenza A virus/isolation & purification , Influenza in Birds/virology , Influenza, Human/virology , Animals , Child, Preschool , China , Female , Genome, Viral/genetics , Humans , Influenza A virus/classification , Influenza A virus/genetics , Influenza, Human/diagnosis , Mutation , Phylogeny , Poultry/virology , Reassortant Viruses/classification , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , SARS-CoV-2 , Viral Proteins/genetics
13.
Emerg Infect Dis ; 27(7): 1821-1830, 2021.
Article in English | MEDLINE | ID: covidwho-1278363

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019, and the outbreak rapidly evolved into the current coronavirus disease pandemic. SARS-CoV-2 is a respiratory virus that causes symptoms similar to those caused by influenza A and B viruses. On July 2, 2020, the US Food and Drug Administration granted emergency use authorization for in vitro diagnostic use of the Influenza SARS-CoV-2 Multiplex Assay. This assay detects influenza A virus at 102.0, influenza B virus at 102.2, and SARS-CoV-2 at 100.3 50% tissue culture or egg infectious dose, or as few as 5 RNA copies/reaction. The simultaneous detection and differentiation of these 3 major pathogens increases overall testing capacity, conserves resources, identifies co-infections, and enables efficient surveillance of influenza viruses and SARS-CoV-2.


Subject(s)
COVID-19 , Influenza A virus , Humans , Influenza A virus/genetics , Influenza B virus/genetics , Multiplex Polymerase Chain Reaction , Reverse Transcription , SARS-CoV-2
14.
Diagn Microbiol Infect Dis ; 100(4): 115381, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1269260

ABSTRACT

To compare the practicability (usability and satisfaction) and analytical performances of VitaPCR™ Flu A&B Assay (Credo Diagnostics Biomedical Pte. Ltd., Singapore, Republic of Singapore) and Xpert® Xpress Flu/RSV kit (Cepheid, Sunnyvale, USA), two rapid point-of-care (POC) nucleic acid amplification tests (NAATs) by reference to multiplex RT-PCR for respiratory viruses. Nasopharyngeal swabs (n=117) were collected from patients with influenza-like illness in Paris, France. Thawed specimens were further analyzed with both NAATs. The usability was comparable for both NAATs. Satisfaction questionnaire was better for the VitaPCR™ platform for the short time of test result in 20 minutes. Both NAATs showed comparable sensitivities (VitaPCRTM: 95.0%; Xpert® Xpress: 97.5%) and specificities (100%) for influenza A/B RNA detection, with excellent reliability and accuracy between both NAATs. Both VitaPCR™ and Xpert® Xpress NAATs can be implemented in hospital setting as POC NAATs to rapidly detect influenza A/B RNA in symptomatic patients.


Subject(s)
Molecular Diagnostic Techniques/instrumentation , Reagent Kits, Diagnostic/standards , Real-Time Polymerase Chain Reaction/instrumentation , Viruses/genetics , Humans , Influenza A virus/genetics , Influenza, Human/diagnosis , Influenza, Human/virology , Molecular Diagnostic Techniques/methods , Nasopharynx/virology , Point-of-Care Testing/standards , Real-Time Polymerase Chain Reaction/standards , Reproducibility of Results , Sensitivity and Specificity , Viruses/classification , Viruses/isolation & purification
15.
J Med Virol ; 93(7): 4392-4398, 2021 07.
Article in English | MEDLINE | ID: covidwho-1263103

ABSTRACT

With the arrival of coronavirus disease 2019 (COVID-19) in Brazil in February 2020, several preventive measures were taken by the population aiming to avoid severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection including the use of masks, social distancing, and frequent hand washing then, these measures may have contributed to preventing infection also by other respiratory viruses. Our goal was to determine the frequencies of Influenza A and B viruses (FLUAV/FLUBV), human mastadenovirus C (HAdV-C), Enterovirus 68 (EV-68), and rhinovirus (RV) besides SARS-CoV-2 among hospitalized patients suspect of COVID-19 with cases of acute respiratory disease syndrome (ARDS) in the period of March to December 2020 and to detect possible coinfections among them. Nucleic acid detection was performed using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) in respiratory samples using naso-oropharyngeal swabs and bronchoalveolar lavage. A total of 418 samples of the 987 analyzed (42.3%) were positive for SARS-CoV-2, 16 (1.62%) samples were positive for FLUAV, no sample was positive for FLUBV or EV-68, 67 (6.78%) samples were positive for HAdV-C, 55 samples were positive for RV 1/2 (26.3%) and 37 for RV 2/2 (13.6%). Coinfections were also detected, including a triple coinfection with SARS-CoV-2, FLUAV, and HAdV-C. In the present work, a very low frequency of FLUV was reported among hospitalized patients with ARDS compared to the past years, probably due to preventive measures taken to avoid COVID-19 and the high influenza vaccination coverage in the region in which this study was performed.


Subject(s)
Adenoviridae Infections/epidemiology , COVID-19/epidemiology , Common Cold/epidemiology , Enterovirus Infections/epidemiology , Influenza, Human/epidemiology , Physical Distancing , Adenoviridae Infections/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Brazil/epidemiology , COVID-19/prevention & control , Child , Child, Preschool , Coinfection/epidemiology , Coinfection/virology , Common Cold/prevention & control , Enterovirus D, Human/genetics , Enterovirus D, Human/isolation & purification , Enterovirus Infections/prevention & control , Female , Humans , Infant , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza B virus/genetics , Influenza B virus/isolation & purification , Influenza, Human/prevention & control , Male , Masks , Mastadenovirus/genetics , Mastadenovirus/isolation & purification , Middle Aged , Nucleic Acid Amplification Techniques/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Rhinovirus/genetics , Rhinovirus/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Young Adult
16.
Hum Genomics ; 15(1): 26, 2021 05 07.
Article in English | MEDLINE | ID: covidwho-1220117

ABSTRACT

BACKGROUND: Mathematical approaches have been for decades used to probe the structure of DNA sequences. This has led to the development of Bioinformatics. In this exploratory work, a novel mathematical method is applied to probe the DNA structure of two related viral families: those of coronaviruses and those of influenza viruses. The coronaviruses are SARS-CoV-2, SARS-CoV-1, and MERS. The influenza viruses include H1N1-1918, H1N1-2009, H2N2-1957, and H3N2-1968. METHODS: The mathematical method used is the slow feature analysis (SFA), a rather new but promising method to delineate complex structure in DNA sequences. RESULTS: The analysis indicates that the DNA sequences exhibit an elaborate and convoluted structure akin to complex networks. We define a measure of complexity and show that each DNA sequence exhibits a certain degree of complexity within itself, while at the same time there exists complex inter-relationships between the sequences within a family and between the two families. From these relationships, we find evidence, especially for the coronavirus family, that increasing complexity in a sequence is associated with higher transmission rate but with lower mortality. CONCLUSIONS: The complexity measure defined here may hold a promise and could become a useful tool in the prediction of transmission and mortality rates in future new viral strains.


Subject(s)
Betacoronavirus/classification , Betacoronavirus/genetics , Influenza A virus/classification , Influenza A virus/genetics , Models, Genetic , Betacoronavirus/physiology , Coronavirus Infections/mortality , Coronavirus Infections/transmission , Coronavirus Infections/virology , Evolution, Molecular , Humans , Influenza A virus/physiology , Influenza, Human/mortality , Influenza, Human/transmission , Influenza, Human/virology , Sequence Analysis, DNA , Species Specificity , Time Factors
17.
J Virol ; 95(15): e0053021, 2021 07 12.
Article in English | MEDLINE | ID: covidwho-1218208

ABSTRACT

Elicitation of lung tissue-resident memory CD8 T cells (TRMs) is a goal of T cell-based vaccines against respiratory viral pathogens, such as influenza A virus (IAV). C-C chemokine receptor type 2 (CCR2)-dependent monocyte trafficking plays an essential role in the establishment of CD8 TRMs in lungs of IAV-infected mice. Here, we used a combination adjuvant-based subunit vaccine strategy that evokes multifaceted (TC1/TC17/TH1/TH17) IAV nucleoprotein-specific lung TRMs to determine whether CCR2 and monocyte infiltration are essential for vaccine-induced TRM development and protective immunity to IAV in lungs. Following intranasal vaccination, neutrophils, monocytes, conventional dendritic cells (DCs), and monocyte-derived dendritic cells internalized and processed vaccine antigen in lungs. We found that basic leucine zipper ATF-like transcription factor 3 (BATF3)-dependent DCs were essential for eliciting T cell responses, but CCR2 deficiency enhanced the differentiation of CD127hi, KLRG-1lo, OX40+ve CD62L+ve, and mucosally imprinted CD69+ve CD103+ve effector and memory CD8 T cells in lungs and airways of vaccinated mice. Mechanistically, increased development of lung TRMs induced by CCR2 deficiency was linked to dampened expression of T-bet but not altered TCF-1 levels or T cell receptor signaling in CD8 T cells. T1/T17 functional programming, parenchymal localization of CD8/CD4 effector and memory T cells, recall T cell responses, and protective immunity to a lethal IAV infection were unaffected in CCR2-deficient mice. Taken together, we identified a negative regulatory role for CCR2 and monocyte trafficking in mucosal imprinting and differentiation of vaccine-induced TRMs. Mechanistic insights from this study may aid the development of T-cell-based vaccines against respiratory viral pathogens, including IAV and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IMPORTANCE While antibody-based immunity to influenza A virus (IAV) is type and subtype specific, lung- and airway-resident memory T cells that recognize conserved epitopes in the internal viral proteins are known to provide heterosubtypic immunity. Hence, broadly protective IAV vaccines need to elicit robust T cell memory in the respiratory tract. We have developed a combination adjuvant-based IAV nucleoprotein vaccine that elicits strong CD4 and CD8 T cell memory in lungs and protects against H1N1 and H5N1 strains of IAV. In this study, we examined the mechanisms that control vaccine-induced protective memory T cells in the respiratory tract. We found that trafficking of monocytes into lungs might limit the development of antiviral lung-resident memory T cells following intranasal vaccination. These findings suggest that strategies that limit monocyte infiltration can potentiate vaccine-induced frontline T-cell immunity to respiratory viruses, such as IAV and SARS-CoV-2.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunity, Mucosal , Immunologic Memory , Influenza A virus/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Receptors, CCR2/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Influenza A virus/genetics , Influenza Vaccines/genetics , Influenza Vaccines/pharmacology , Lung/immunology , Mice , Mice, Knockout , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/prevention & control , Receptors, CCR2/genetics
18.
J Virol Methods ; 293: 114151, 2021 07.
Article in English | MEDLINE | ID: covidwho-1174407

ABSTRACT

In the current pandemic of coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the co-circulation of SARS-CoV-2 and other respiratory viruses during the upcoming fall and winter seasons may present an unprecedented burden of respiratory disease in the population. Important respiratory viruses that will need to be closely monitored during this time include SARS-CoV-2, influenza A and influenza B. The epidemiology of these viruses is very similar in terms of susceptible populations, mode of transmission, and the clinical syndromes, thus the etiological agent will be difficult to differentiate without target specific assays. The availability of a sensitive and specific multiplex assay that can simultaneously detect all these targets will be valuable. Here we report the validation of a real-time reverse transciptase-PCR assay for the simultaneous detection of SARS-CoV-2, influenza A and influenza B. This multiplex assay is comparable to its singleplex counterparts with a limit-of-detection being less than 5 copies/reaction, 100 % specificity, over seven logs of dynamic range, less than 1 % coefficientof variation showing high precision, and equivalent accuracy using patient samples. It also offers the added benefits of savings in reagents and technologist time while improving testing efficiency and turn-around-times in order to respond effectively to the ongoing pandemic.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Influenza A virus/genetics , Influenza B virus/genetics , Influenza, Human/diagnosis , Multiplex Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Coinfection/diagnosis , Humans , Reproducibility of Results , Sensitivity and Specificity
19.
J Infect Chemother ; 27(6): 820-825, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1045151

ABSTRACT

INTRODUCTION: Digital immunoassays (DIAs) and molecular point-of-care (POC) tests for influenza were recently developed. We aimed to evaluate and compare the positive rate with molecular POC tests and DIAs in detecting influenza virus A, B and respiratory syncytial virus (RSV). METHODS: A prospective observational study was conducted in 2019-2020. Nasopharyngeal swab samples were collected from adult outpatients with influenza-like illness who visited four hospitals and clinics in Japan. DIAs were performed at each facility. The clinical diagnosis was determined based on the findings of DIAs, history taking, and physical assessment. Molecular POC test and reverse transcription polymerase chain reaction (RT-PCR) were performed later. RESULTS: A total of 182 patients were evaluated. The positive rate for influenza virus with molecular POC test was significantly higher than that with DIAs (51.6% versus 40.7%, p = 0.046). In patients who tested positive for influenza virus with only molecular POC test, the presence of influenza virus was confirmed by RT-PCR. In a comparison between the patients who were positive for influenza virus with only molecular POC test and those with both molecular POC test and DIA, the percentage of patients who sought consultation within 18 h after the onset of symptoms was significantly higher in the molecular POC test only group than in the both methods group (70.0% versus 43.2%, p = 0.044). CONCLUSIONS: A molecular POC test could contribute to the accurate diagnosis of influenza in patients with influenza-like illness, especially those who visited a hospital immediately after the onset of symptoms.


Subject(s)
Influenza A virus , Influenza, Human , Orthomyxoviridae , Respiratory Syncytial Virus Infections , Adult , Humans , Immunoassay , Influenza A virus/genetics , Influenza B virus/genetics , Influenza, Human/diagnosis , Japan , Orthomyxoviridae/genetics , Point-of-Care Systems , Point-of-Care Testing , Respiratory Syncytial Virus Infections/diagnosis , Sensitivity and Specificity
20.
J Clin Microbiol ; 59(4)2021 03 19.
Article in English | MEDLINE | ID: covidwho-1153640

ABSTRACT

Patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A (flu A), influenza B (flu B), and respiratory syncytial virus (RSV) have overlapping clinical presentations, but the approaches to treatment and management of infections caused by these viruses are different. Therefore, rapid diagnosis in conjunction with infection prevention measures is important to prevent transmission of the diseases. Recently, a new Xpert Xpress SARS-CoV-2/Flu/RSV (Xpert 4-in-1) assay enables the detection and differentiation of SARS-CoV-2, flu A, flu B, and RSV in upper respiratory tract specimens. In this study, we evaluated the performance of the Xpert 4-in-1 assay by comparing it with that of the Xpert Xpress SARS-CoV-2 and Xpert Xpress Flu/RSV assays for the detection of the four viruses in nasopharyngeal (NP) specimens. A total of 279 NP specimens, including 66, 56, 64, and 53 specimens positive for SARS-CoV-2, flu A, flu B, and RSV, respectively, were included. The Xpert 4-in-1 assay demonstrated high concordance with the comparator assays, with overall agreement for SARS-CoV-2, flu A, flu B, and RSV at 99.64%, 100%, 99.64%, and 100%, respectively, and a high Cohen's kappa (κ) value ranging from 0.99 to 1.00, indicating an almost perfect correlation between assays. The cycle threshold value association between positive samples also showed a good correlation between assays. In conclusion, the overall performance of the Xpert 4-in-1 assay was highly comparable to that of the Xpert SARS-CoV-2 and Xpert Flu/RSV assays for the detection and differentiation of SARS CoV-2, flu A, flu B, and RSV in NP specimens.


Subject(s)
COVID-19 , Herpesvirus 1, Cercopithecine , Influenza A virus , Influenza, Human , Respiratory Syncytial Virus Infections , Humans , Influenza A virus/genetics , Influenza B virus/genetics , Influenza, Human/diagnosis , Molecular Diagnostic Techniques , Nasopharynx , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...