Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Viruses ; 15(5)2023 05 07.
Article in English | MEDLINE | ID: covidwho-20242796

ABSTRACT

Avian coronaviruses (ACoV) have been shown to be highly prevalent in wild bird populations. More work on avian coronavirus detection and diversity estimation is needed for the breeding territories of migrating birds, where the high diversity and high prevalence of Orthomyxoviridae and Paramyxoviridae have already been shown in wild birds. In order to detect ACoV RNA, we conducted PCR diagnostics of cloacal swab samples from birds, which we monitored during avian influenza A virus surveillance activities. Samples from two distant Asian regions of Russia (Sakhalin region and Novosibirsk region) were tested. Amplified fragments of the RNA-dependent RNA-polymerase (RdRp) of positive samples were partially sequenced to determine the species of Coronaviridae represented. The study revealed a high presence of ACoV among wild birds in Russia. Moreover, there was a high presence of birds co-infected with avian coronavirus, avian influenza virus, and avian paramyxovirus. We found one case of triple co-infection in a Northern Pintail (Anas acuta). Phylogenetic analysis revealed the circulation of a Gammacoronavirus species. A Deltacoronavirus species was not detected, which supports the data regarding the low prevalence of deltacoronaviruses among surveyed bird species.


Subject(s)
Avulavirus , Gammacoronavirus , Influenza A virus , Influenza in Birds , Animals , Ducks , Gammacoronavirus/genetics , Influenza in Birds/epidemiology , Avulavirus/genetics , Siberia/epidemiology , Phylogeny , Birds , Animals, Wild , Influenza A virus/genetics , RNA
2.
Cell Mol Life Sci ; 80(5): 136, 2023 May 02.
Article in English | MEDLINE | ID: covidwho-2317271

ABSTRACT

Influenza A virus (IAV) is a respiratory virus that causes epidemics and pandemics. Knowledge of IAV RNA secondary structure in vivo is crucial for a better understanding of virus biology. Moreover, it is a fundament for the development of new RNA-targeting antivirals. Chemical RNA mapping using selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) coupled with Mutational Profiling (MaP) allows for the thorough examination of secondary structures in low-abundance RNAs in their biological context. So far, the method has been used for analyzing the RNA secondary structures of several viruses including SARS-CoV-2 in virio and in cellulo. Here, we used SHAPE-MaP and dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) for genome-wide secondary structure analysis of viral RNA (vRNA) of the pandemic influenza A/California/04/2009 (H1N1) strain in both in virio and in cellulo environments. Experimental data allowed the prediction of the secondary structures of all eight vRNA segments in virio and, for the first time, the structures of vRNA5, 7, and 8 in cellulo. We conducted a comprehensive structural analysis of the proposed vRNA structures to reveal the motifs predicted with the highest accuracy. We also performed a base-pairs conservation analysis of the predicted vRNA structures and revealed many highly conserved vRNA motifs among the IAVs. The structural motifs presented herein are potential candidates for new IAV antiviral strategies.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza A virus , Humans , Influenza A Virus, H1N1 Subtype/genetics , SARS-CoV-2/genetics , Influenza A virus/genetics , RNA, Viral/genetics , Genomics
3.
J Med Virol ; 95(4): e28748, 2023 04.
Article in English | MEDLINE | ID: covidwho-2301230

ABSTRACT

Airborne transmission is an important transmission route for the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological data indicate that certain SARS-CoV-2 variants, like the omicron variant, are associated with higher transmissibility. We compared virus detection in air samples between hospitalized patients infected with different SARS-CoV-2 variants or influenza virus. The study was performed during three separate time periods in which subsequently the alpha, delta, and omicron SARS-CoV-2 variants were predominant. In total, 79 patients with coronavirus disease 2019 (COVID-19) and 22 patients with influenza A virus infection were included. Collected air samples were positive in 55% of patients infected with the omicron variant in comparison to 15% of those infected with the delta variant (p < 0.01). In multivariable analysis, the SARS-CoV-2 omicron BA.1/BA.2 variant (as compared to the delta variant) and the viral load in nasopharynx were both independently associated with air sample positivity, but the alpha variant and COVID-19 vaccination were not. The proportion of positive air samples patients infected with the influenza A virus was 18%. In conclusion, the higher air sample positivity rate of the omicron variant compared to previous SARS-CoV-2 variants may partially explain the higher transmission rates seen in epidemiological trends.


Subject(s)
COVID-19 , Influenza A virus , Humans , SARS-CoV-2/genetics , COVID-19 Vaccines , Virus Shedding , COVID-19/epidemiology , Influenza A virus/genetics
4.
Viruses ; 15(4)2023 04 16.
Article in English | MEDLINE | ID: covidwho-2290490

ABSTRACT

Influenza viruses belong to the family Orthomyxoviridae with a negative-sense, single-stranded segmented RNA genome. They infect a wide range of animals, including humans. From 1918 to 2009, there were four influenza pandemics, which caused millions of casualties. Frequent spillover of animal influenza viruses to humans with or without intermediate hosts poses a serious zoonotic and pandemic threat. The current SARS-CoV-2 pandemic overshadowed the high risk raised by animal influenza viruses, but highlighted the role of wildlife as a reservoir for pandemic viruses. In this review, we summarize the occurrence of animal influenza virus in humans and describe potential mixing vessel or intermediate hosts for zoonotic influenza viruses. While several animal influenza viruses possess a high zoonotic risk (e.g., avian and swine influenza viruses), others are of low to negligible zoonotic potential (e.g., equine, canine, bat and bovine influenza viruses). Transmission can occur directly from animals, particularly poultry and swine, to humans or through reassortant viruses in "mixing vessel" hosts. To date, there are less than 3000 confirmed human infections with avian-origin viruses and less than 7000 subclinical infections documented. Likewise, only a few hundreds of confirmed human cases caused by swine influenza viruses have been reported. Pigs are the historic mixing vessel host for the generation of zoonotic influenza viruses due to the expression of both avian-type and human-type receptors. Nevertheless, there are a number of hosts which carry both types of receptors and can act as a potential mixing vessel host. High vigilance is warranted to prevent the next pandemic caused by animal influenza viruses.


Subject(s)
COVID-19 , Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Swine Diseases , Animals , Dogs , Cattle , Horses , Humans , Swine , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/veterinary , SARS-CoV-2 , Influenza A virus/genetics , Birds
5.
Viruses ; 15(3)2023 02 28.
Article in English | MEDLINE | ID: covidwho-2272449

ABSTRACT

Single-stranded RNA viruses (ssRNAv) are characterized by their biological diversity and great adaptability to different hosts; traits which make them a major threat to human health due to their potential to cause zoonotic outbreaks. A detailed understanding of the mechanisms involved in viral proliferation is essential to address the challenges posed by these pathogens. Key to these processes are ribonucleoproteins (RNPs), the genome-containing RNA-protein complexes whose function is to carry out viral transcription and replication. Structural determination of RNPs can provide crucial information on the molecular mechanisms of these processes, paving the way for the development of new, more effective strategies to control and prevent the spread of ssRNAv diseases. In this scenario, cryogenic electron microscopy (cryoEM), relying on the technical and methodological revolution it has undergone in recent years, can provide invaluable help in elucidating how these macromolecular complexes are organized, packaged within the virion, or the functional implications of these structures. In this review, we summarize some of the most prominent achievements by cryoEM in the study of RNP and nucleocapsid structures in lipid-enveloped ssRNAv.


Subject(s)
Influenza A virus , RNA, Viral , Humans , RNA, Viral/genetics , Cryoelectron Microscopy , Ribonucleoproteins/genetics , Viral Proteins/genetics , Nucleocapsid/metabolism , Influenza A virus/genetics
6.
J Clin Virol ; 161: 105402, 2023 04.
Article in English | MEDLINE | ID: covidwho-2240340

ABSTRACT

BACKGROUND: Influenza and respiratory syncytial (RSV) viruses are expected to co-circulate with SARS-CoV-2 in the upcoming seasons and clinical differential diagnosis between them is difficult. Laboratory-based RT-PCR is a gold standard diagnostic method for influenza, RSV and SARS-CoV-2. The objective of this study was to estimate the diagnostic performance of a novel point-of-care RT-PCR assay STANDARD M10 Flu/RSV/SARS-CoV-2 (SD Biosensor) in a large number of clinical specimens with diversified (co)-infection patterns and viral loads. METHODS: This was a retrospective study, in which all samples were tested in both STANDARD M10 Flu/RSV/SARS-CoV-2 index and Allplex SARS-CoV-2/Respiratory Panel 1 (Seegene) reference kits. Samples with discordant results were further processed in a third resolver test (Resp-4-Plex, Abbott). RESULTS: A total of 1,019 naso-/oropharyngeal samples (50.3% positive for at least one virus) were processed in both STANDARD M10 Flu/RSV/SARS-CoV-2 and Allplex assays and the overall between-assay agreement was as high as 94.6%. Positive percent agreement of the STANDARD M10 Flu/RSV/SARS-CoV-2 was 100%, 96.6%, 97.3% and 99.4% for influenza A, B, RSV and SARS-CoV-2, respectively. The corresponding negative percent agreement was 99.7%. 100%, 100% and 98.4%, respectively. The expected positive and negative predictive values for all viruses were constantly above 96% in a reasonable range of disease prevalence. CONCLUSIONS: STANDARD M10 Flu/RSV/SARS-CoV-2 is a reliable RT-PCR assay able to detect influenza A, influenza B, RSV and SARS-CoV-2 in one hour or less, fostering a rapid differential diagnosis of common respiratory viruses.


Subject(s)
COVID-19 , Coinfection , Influenza A virus , Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Influenza, Human/diagnosis , Respiratory Syncytial Viruses , SARS-CoV-2/genetics , Respiratory Syncytial Virus Infections/diagnosis , Influenza B virus/genetics , Diagnosis, Differential , Reverse Transcriptase Polymerase Chain Reaction , Retrospective Studies , Sensitivity and Specificity , Influenza A virus/genetics , Molecular Diagnostic Techniques/methods , Real-Time Polymerase Chain Reaction/methods , COVID-19/diagnosis , Coinfection/diagnosis , Respiratory Syncytial Virus, Human/genetics
7.
Methods Mol Biol ; 2610: 109-127, 2023.
Article in English | MEDLINE | ID: covidwho-2245117

ABSTRACT

Influenza A virus H1N1, a respiratory virus transmitted via droplets and responsible for the global pandemic in 2009, belongs to the Orthomyxoviridae family, a single-negative-stranded RNA. It possesses glycoprotein spikes neuraminidase (NA), hemagglutinin (HA), and a matrix protein named M2. The Covid-19 pandemic affected the world population belongs to the respiratory virus category is currently mutating, this can also be observed in the case of H1N1 influenza A virus. Mutations in H1N1 can enhance the viral capacity which can lead to another pandemic. This virus affects children below 5 years, pregnant women, old age people, and immunocompromised individuals due to its high viral capacity. Its early detection is necessary for the patient's recovery time. In this book chapter, we mainly focus on the detection methods for H1N1, from traditional ones to the most advance including biosensors, RT-LAMP, multi-fluorescent PCR.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Pregnancy , Child , Humans , Female , Influenza A Virus, H1N1 Subtype/genetics , Pandemics , Sensitivity and Specificity , COVID-19/epidemiology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A virus/genetics , Neuraminidase/genetics , RNA, Viral/genetics
8.
Arch Virol ; 168(3): 87, 2023 Feb 14.
Article in English | MEDLINE | ID: covidwho-2244493

ABSTRACT

A methodological approach based on reverse transcription (RT)-multiplex PCR followed by next-generation sequencing (NGS) was implemented to identify multiple respiratory RNA viruses simultaneously. A convenience sampling from respiratory surveillance and SARS-CoV-2 diagnosis in 2020 and 2021 in Montevideo, Uruguay, was analyzed. The results revealed the cocirculation of SARS-CoV-2 with human rhinovirus (hRV) A, B and C, human respiratory syncytial virus (hRSV) B, influenza A virus, and metapneumovirus B1. SARS-CoV-2 coinfections with hRV or hRSV B and influenza A virus coinfections with hRV C were identified in adults and/or children. This methodology combines the benefits of multiplex genomic amplification with the sensitivity and information provided by NGS. An advantage is that additional viral targets can be incorporated, making it a helpful tool to investigate the cocirculation and coinfections of respiratory viruses in pandemic and post-pandemic contexts.


Subject(s)
COVID-19 , Coinfection , Influenza A virus , Influenza, Human , RNA Viruses , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Child , Adult , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Pandemics , RNA , COVID-19 Testing , Coinfection/diagnosis , Coinfection/epidemiology , SARS-CoV-2/genetics , RNA Viruses/genetics , Respiratory Syncytial Virus, Human/genetics , Influenza A virus/genetics , High-Throughput Nucleotide Sequencing , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Influenza, Human/epidemiology
9.
Mol Biol Evol ; 40(2)2023 02 03.
Article in English | MEDLINE | ID: covidwho-2189385

ABSTRACT

Some viruses (e.g., human immunodeficiency virus 1 and severe acute respiratory syndrome coronavirus 2) have been experimentally proposed to accelerate features of human aging and of cellular senescence. These observations, along with evolutionary considerations on viral fitness, raised the more general puzzling hypothesis that, beyond documented sources in human genetics, aging in our species may also depend on virally encoded interactions distorting our aging to the benefits of diverse viruses. Accordingly, we designed systematic network-based analyses of the human and viral protein interactomes, which unraveled dozens of viruses encoding proteins experimentally demonstrated to interact with proteins from pathways associated with human aging, including cellular senescence. We further corroborated our predictions that specific viruses interfere with human aging using published experimental evidence and transcriptomic data; identifying influenza A virus (subtype H1N1) as a major candidate age distorter, notably through manipulation of cellular senescence. By providing original evidence that viruses may convergently contribute to the evolution of numerous age-associated pathways through co-evolution, our network-based and bipartite network-based methodologies support an ecosystemic study of aging, also searching for genetic causes of aging outside a focal aging species. Our findings, predicting age distorters and targets for anti-aging therapies among human viruses, could have fundamental and practical implications for evolutionary biology, aging study, virology, medicine, and demography.


Subject(s)
Aging , Influenza A Virus, H1N1 Subtype , Influenza A virus , Humans , Aging/genetics , Influenza A virus/genetics , Influenza A Virus, H1N1 Subtype/genetics , Viral Proteins/genetics , Biological Coevolution , Cellular Senescence
10.
Can J Microbiol ; 69(3): 146-150, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2193949

ABSTRACT

The GeneXpert® Xpert® Xpress SARS-CoV-2/Flu/RSV PLUS combination test (PLUS assay) received Health Canada approval in January 2022. The PLUS assay is similar to the SARS-CoV-2/Flu/RSV combination test, with modifications to improve assay robustness against circulating and emerging variants. The performance characteristics of the PLUS assay were assessed at the Lakeridge Health Oshawa Hospital Centre and the National Microbiology Laboratory of Canada. The PLUS assay was directly compared to the SARS-CoV-2/Flu/RSV combination test using SARS-CoV-2 culture from five variants and remnant clinical specimens collected across the coronavirus disease 2019 pandemic. This included 50 clinical specimens negative for all pathogens, 110 clinical specimens positive for SARS-CoV-2, influenza A, influenza B, RSVA, and(or) RSVB and an additional 11 mixed samples to screen for target interactions. The PLUS assay showed a high % agreement with the widely used SARS-CoV-2/Flu/RSV combination test. Based on these findings, the PLUS assay and the Xpert SARS-CoV-2/Flu/RSV combination test results are largely consistent with no observed difference in sensitivity, specificity, or time to result when challenged with various SARS-CoV-2 variants. The reported cycle threshold (Ct) values provided by the new PLUS assay were also unchanged, with the exception of a possible 1-2 decrease reported in Ct for RSVA across a limited sample size.


Subject(s)
COVID-19 , Influenza A virus , Influenza, Human , Humans , Influenza, Human/diagnosis , SARS-CoV-2/genetics , COVID-19/diagnosis , Influenza B virus/genetics , Nasopharynx , Molecular Diagnostic Techniques/methods , Influenza A virus/genetics , Sensitivity and Specificity
12.
Diagn Microbiol Infect Dis ; 105(4): 115891, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2165214

ABSTRACT

OBJECTIVES: This study assessed the clinical performance of the cobas Liat SARS­CoV­2 & Influenza A/B assay (LiatCOVID/flu) for the detection of both severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses during the SARS-CoV-2 Omicron outbreak. METHODS: Residual nasopharyngeal swab samples (NPS) previously tested with cobas SARS-CoV-2 & Influenza A/B for SARS-CoV-2 and with the Allplex Respiratory Panel 1 for influenza viruses were collected. All samples were submitted to the LiatCOVID/flu assay. RESULTS: A total of 1147 samples were collected comprising 167 SARS-CoV-2-positive, 556 SARS-CoV-2-negative, 224 influenza-positive, and 200 influenza-negative cases. The positive percent agreement (PPA)/negative percent agreement (NPA) of LiatCOVID/flu for SARS-CoV-2 and influenza viruses compared to the previously tested methods were 100% of 100% and 99.6% of 100%, respectively. CONCLUSIONS: The LiatCOVID/flu assay shows an acceptable performance in the detection of SARS-CoV-2 and influenza viruses using NPS samples.


Subject(s)
COVID-19 , Influenza A virus , Influenza, Human , Humans , SARS-CoV-2 , Influenza, Human/diagnosis , Influenza B virus/genetics , Nasopharynx , COVID-19/diagnosis , Influenza A virus/genetics , Sensitivity and Specificity
13.
Int J Mol Sci ; 24(2)2023 Jan 08.
Article in English | MEDLINE | ID: covidwho-2166609

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic, whereas the influenza A virus (IAV) causes seasonal epidemics and occasional pandemics. Both viruses lead to widespread infection and death. SARS-CoV-2 and the influenza virus are RNA viruses. The SARS-CoV-2 genome is an approximately 30 kb, positive sense, 5' capped single-stranded RNA molecule. The influenza A virus genome possesses eight single-stranded negative-sense segments. The RNA secondary structure in the untranslated and coding regions is crucial in the viral replication cycle. The secondary structure within the RNA of SARS-CoV-2 and the influenza virus has been intensively studied. Because the whole of the SARS-CoV-2 and influenza virus replication cycles are dependent on RNA with no DNA intermediate, the RNA is a natural and promising target for the development of inhibitors. There are a lot of RNA-targeting strategies for regulating pathogenic RNA, such as small interfering RNA for RNA interference, antisense oligonucleotides, catalytic nucleic acids, and small molecules. In this review, we summarized the knowledge about the inhibition of SARS-CoV-2 and influenza A virus propagation by targeting their RNA secondary structure.


Subject(s)
COVID-19 , Influenza A virus , Orthomyxoviridae , Humans , SARS-CoV-2 , Influenza A virus/genetics , Nucleotide Motifs , Pandemics , RNA , RNA, Viral/genetics , RNA, Viral/chemistry
14.
Viruses ; 14(12)2022 11 30.
Article in English | MEDLINE | ID: covidwho-2143727

ABSTRACT

The COVID-19 pandemic has modified the seasonal pattern of respiratory infections. The objective of the present study is to characterize the out-of-season circulation of influenza viruses and an influenza outbreak that occurred in southern Italy in August 2022. Nasopharyngeal swabs collected from patients with influenza-like illnesses (ILI) were tested for the presence of influenza and other respiratory viruses. Epidemiological investigations on 85 patients involved in an influenza outbreak were performed. Sequencing and phylogenetic analysis of hemagglutinin genes was undertaken on samples positive for influenza A. In August 2022, in the Apulia region (Italy), influenza A infection was diagnosed in 19 patients, 18 infected with A/H3N2 and one with A/H1N1pdm09 virus. Seven influenza-positive patients were hospitalized with ILI. A further 17 symptomatic subjects, associated with an influenza outbreak, were also tested; 11 were positive for influenza A/H3N2 virus. Phylogenetic analysis of 12 of the A/H3N2 sequences showed that they all belonged to subclade 3C.2a1b.2a.2. The A/H1N1pdm09 strain belonged to subclade 6B.1A.5a.2. The out-of-season circulation of the influenza virus during the summer months could be linked to changing dynamics in the post-COVID-19 era, as well as to the impact of climate change. Year-round surveillance of respiratory viruses is needed to monitor this phenomenon and to provide effective prevention strategies.


Subject(s)
COVID-19 , Influenza A virus , Influenza, Human , Humans , Influenza, Human/epidemiology , Influenza A Virus, H3N2 Subtype/genetics , Seasons , Phylogeny , Pandemics , COVID-19/epidemiology , Influenza A virus/genetics , Italy/epidemiology
15.
Viruses ; 14(12)2022 11 30.
Article in English | MEDLINE | ID: covidwho-2143723

ABSTRACT

As for the case of SARS-CoV-2, genome sequencing of influenza viruses is of potential interest to raise and address virological issues. Recently, false-negativity of real-time reverse transcription-PCR (qPCR) assays that detect influenza A/H3N2 virus RNA were reported and associated with two mutations (A37T and C161T) in the Matrix-encoding (M1) gene located on viral segment 7. This triggered a national alert in France. The present study sought to assess the association between the presence of these mutations and potential false negative results of influenza A/H3N2 virus RNA detection by commercialized qPCR assays at the clinical virology laboratory of our university hospitals in southern France. This study focused on the genetic diversity in the M1 gene and segment 7 of 624 influenza A/H3N2 virus genomes obtained from respiratory samples having tested qPCR-positive with M1 gene-targeting assays in our clinical virology laboratory. A total of 585 among the 624 influenza A/H3N2 virus genomes (93.7%) were of clade 3C.2a1b.2a.2, and 39 (6.3%) were of clade 3C.2a1b.1a. M1 gene substitutions A37T and C161T were both present in 582 (93.3%) genomes, only of clade 3C.2a1b.2a.2. Substitution A37T was present in 621 (99.5%) genomes. Substitution C161T was present in 585 genomes (93.8%), all of clade 3C.2a1b.2a.2. Moreover, 21 other nucleotide positions were mutated in ≥90% of the genomes. The present study shows that A37T/C and C161T mutations, and other mutations in the M1 gene and segment 7, were widely present in influenza A/H3N2 virus genomes recovered from respiratory samples diagnosed qPCR-positive with commercialized assays.


Subject(s)
COVID-19 , Influenza A virus , Influenza, Human , Humans , Influenza A Virus, H3N2 Subtype/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , SARS-CoV-2/genetics , Influenza A virus/genetics , RNA, Viral/genetics , Phylogeny
16.
Virology ; 576: 105-110, 2022 11.
Article in English | MEDLINE | ID: covidwho-2061964

ABSTRACT

As SARS-CoV-2 and influenza viruses co-circulate, co-infections with these viruses generate an increasing concern to public health. To evaluate the prevalence and clinical impacts of SARS-CoV-2 and influenza A virus co-infections during the 2021-2022 influenza season, SARS-CoV-2-positive samples from 462 individuals were collected from October 2021 to January 2022. Of these individuals, 152 tested positive for influenza, and the monthly co-infection rate ranged from 7.1% to 48%. Compared to the Delta variant, individuals infected with Omicron were less likely to be co-infected and hospitalized, and individuals who received influenza vaccines were less likely to become co-infected. Three individuals had two samples collected on different dates, and all three developed a co-infection after their initial SARS-CoV-2 infection. This study demonstrates high prevalence of co-infections in central Missouri during the 2021-2022 influenza season, differences in co-infection prevalence between the Delta and the Omicron waves, and the importance of influenza vaccinations against co-infections.


Subject(s)
COVID-19 , Coinfection , Influenza A virus , Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/epidemiology , SARS-CoV-2 , Coinfection/epidemiology , Cross-Sectional Studies , Seasons , Missouri/epidemiology , COVID-19/epidemiology , Influenza A virus/genetics
17.
PLoS One ; 17(9): e0274222, 2022.
Article in English | MEDLINE | ID: covidwho-2021957

ABSTRACT

INTRODUCTION: Using respiratory virus rapid diagnostic tests in the emergency department could allow better and faster clinical management. Point-of-care PCR instruments now provide results in less than 30 minutes. The objective of this study was to assess the impact of the use of a rapid molecular diagnostic test, the cobas® Influenza A/B & RSV Assay, during the clinical management of emergency department patients. METHODS: Patients (adults and children) requiring admission or suffering from an underlying condition at risk of respiratory complications were prospectively recruited in the emergency department of four hospitals in the Brussels region. Physicians' intentions regarding admission, isolation, antibiotic, and antiviral use were collected before and after performing the rapid molecular test. Additionally, a comparison of the analytical performance of this test against antigen rapid tests and viral culture was performed as well as a time-to-result evaluation. RESULTS: Among the 293 patients recruited, 90 had a positive PCR, whereas 44 had a positive antigen test. PCR yielded a sensitivity of 100% for all targets. Antigen tests yielded sensitivities ranging from 66.7% for influenza B to 83.3% for respiratory syncytial virus (RSV). The use of PCR allowed a decrease in the overall need for isolation and treatment by limiting the isolation of negative patients and antibiotic use for positive patients. Meanwhile, antiviral treatments better targeted patients with a positive influenza PCR. CONCLUSION: The use of a rapid influenza and RSV molecular test improves the clinical management of patients admitted to the emergency department by providing a fast and reliable result. Their additional cost compared to antigen tests should be balanced with the benefit of their analytical performance, leading to efficient reductions in the need for isolation and antibiotic use.


Subject(s)
Herpesvirus 1, Cercopithecine , Influenza A virus , Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Adult , Anti-Bacterial Agents/therapeutic use , Antiviral Agents , Child , Emergency Service, Hospital , Humans , Influenza A virus/genetics , Influenza B virus/genetics , Influenza, Human/diagnosis , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus, Human/genetics , Sensitivity and Specificity
18.
J Appl Microbiol ; 133(6): 3534-3545, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2001658

ABSTRACT

INTRODUCTION: Quantitative reverse transcription PCR (RT-qPCR) is the leading tool to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given that it will almost certainly continue to coexist with other respiratory viruses in the coming years, our study aimed to design a multiplex PCR system not affected by supplier outages and with reduced cost compared to the existing commercially available kits. METHODS AND RESULTS: In this study, combinations of four primers/probe sets were used to construct a flexible RT-qPCR assay which is capable of discriminating between SARS-CoV-2 and the seasonal human coronavirus HCoV-OC43, or even influenza A virus. Additionally, the human RPP30 gene was used as an internal control. To demonstrate the robustness of the assay, it was applied to a collection of 150 clinical samples. The results showed 100% sensitivity and specificity compared to the automatized system used at the hospital and were better when indeterminate samples were analysed. CONCLUSIONS: This study provides an efficient method for the simultaneous detection of SARS-CoV-2, HCoV-OC43 and influenza A virus, and its efficacy has been tested on clinical samples showing outstanding results. SIGNIFICANCE AND IMPACT OF THE STUDY: The multiplex RT-qPCR design offers an accessible and economical alternative to commercial detection kits for hospitals and laboratories with limited economic resources or facing situations of supply shortage.


Subject(s)
COVID-19 , Influenza A virus , Humans , SARS-CoV-2/genetics , Multiplex Polymerase Chain Reaction/methods , Influenza A virus/genetics , COVID-19/diagnosis , Sensitivity and Specificity , Nasopharynx
19.
Infect Genet Evol ; 104: 105355, 2022 10.
Article in English | MEDLINE | ID: covidwho-1996425

ABSTRACT

The rampant spread of highly pathogenic avian influenza A (H5N6) virus has drawn additional concerns along with ongoing Covid-19 pandemic. Due to its migration-related diffusion, the situation is deteriorating. Without an existing effective therapy and vaccines, it will be baffling to take control measures. In this regard, we propose a revers vaccinology approach for prediction and design of a multi-epitope peptide based vaccine. The induction of humoral and cell-mediated immunity seems to be the paramount concern for a peptide vaccine candidate; thus, antigenic B and T cell epitopes were screened from the surface, membrane and envelope proteins of the avian influenza A (H5N6) virus, and passed through several immunological filters to determine the best possible one. Following that, the selected antigenic with immunogenic epitopes and adjuvant were linked to finalize the multi-epitope-based peptide vaccine by appropriate linkers. For the prediction of an effective binding, molecular docking was carried out between the vaccine and immunological receptors (TLR8). Strong binding affinity and good docking scores clarified the stringency of the vaccines. Furthermore, molecular dynamics simulation was performed within the highest binding affinity complex to observe the stability, and minimize the designed vaccine's high mobility region to order to increase its stability. Then, Codon optimization and other physicochemical properties were performed to reveal that the vaccine would be suitable for a higher expression at cloning level and satisfactory thermostability condition. In conclusion, predicting the overall in silico assessment, we anticipated that our designed vaccine would be a plausible prevention against avian influenza A (H5N6) virus.


Subject(s)
COVID-19 , Influenza A virus , Influenza in Birds , Influenza, Human , Animals , Computational Biology , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Humans , Influenza A virus/genetics , Influenza in Birds/prevention & control , Influenza, Human/prevention & control , Molecular Docking Simulation , Pandemics , Peptides , Toll-Like Receptor 8 , Vaccines, Subunit
20.
Nat Med ; 28(9): 1944-1955, 2022 09.
Article in English | MEDLINE | ID: covidwho-1991643

ABSTRACT

Influenza A virus's (IAV's) frequent genetic changes challenge vaccine strategies and engender resistance to current drugs. We sought to identify conserved and essential RNA secondary structures within IAV's genome that are predicted to have greater constraints on mutation in response to therapeutic targeting. We identified and genetically validated an RNA structure (packaging stem-loop 2 (PSL2)) that mediates in vitro packaging and in vivo disease and is conserved across all known IAV isolates. A PSL2-targeting locked nucleic acid (LNA), administered 3 d after, or 14 d before, a lethal IAV inoculum provided 100% survival in mice, led to the development of strong immunity to rechallenge with a tenfold lethal inoculum, evaded attempts to select for resistance and retained full potency against neuraminidase inhibitor-resistant virus. Use of an analogous approach to target SARS-CoV-2, prophylactic administration of LNAs specific for highly conserved RNA structures in the viral genome, protected hamsters from efficient transmission of the SARS-CoV-2 USA_WA1/2020 variant. These findings highlight the potential applicability of this approach to any virus of interest via a process we term 'programmable antivirals', with implications for antiviral prophylaxis and post-exposure therapy.


Subject(s)
COVID-19 Drug Treatment , Influenza A virus , Animals , Antiviral Agents/pharmacology , Influenza A virus/genetics , Mice , Neuraminidase , RNA, Viral/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL