Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
J Immunother Cancer ; 10(4)2022 04.
Article in English | MEDLINE | ID: covidwho-2324416

ABSTRACT

During SARS-CoV-2 infection, the innate immune response can be inhibited or delayed, and the subsequent persistent viral replication can induce emergency signals that may culminate in a cytokine storm contributing to the severe evolution of COVID-19. Cytokines are key regulators of the immune response and virus clearance, and, as such, are linked to the-possibly altered-response to the SARS-CoV-2. They act via a family of more than 40 transmembrane receptors that are coupled to one or several of the 4 Janus kinases (JAKs) coded by the human genome, namely JAK1, JAK2, JAK3, and TYK2. Once activated, JAKs act on pathways for either survival, proliferation, differentiation, immune regulation or, in the case of type I interferons, antiviral and antiproliferative effects. Studies of graft-versus-host and systemic rheumatic diseases indicated that JAK inhibitors (JAKi) exert immunosuppressive effects that are non-redundant with those of corticotherapy. Therefore, they hold the potential to cut-off pathological reactions in COVID-19. Significant clinical experience already exists with several JAKi in COVID-19, such as baricitinib, ruxolitinib, tofacitinib, and nezulcitinib, which were suggested by a meta-analysis (Patoulias et al.) to exert a benefit in terms of risk reduction concerning major outcomes when added to standard of care in patients with COVID-19. Yet, only baricitinib is recommended in first line for severe COVID-19 treatment by the WHO, as it is the only JAKi that has proven efficient to reduce mortality in individual randomized clinical trials (RCT), especially the Adaptive COVID-19 Treatment Trial (ACTT-2) and COV-BARRIER phase 3 trials. As for secondary effects of JAKi treatment, the main caution with baricitinib consists in the induced immunosuppression as long-term side effects should not be an issue in patients treated for COVID-19.We discuss whether a class effect of JAKi may be emerging in COVID-19 treatment, although at the moment the convincing data are for baricitinib only. Given the key role of JAK1 in both type I IFN action and signaling by cytokines involved in pathogenic effects, establishing the precise timing of treatment will be very important in future trials, along with the control of viral replication by associating antiviral molecules.


Subject(s)
COVID-19 Drug Treatment , Janus Kinase Inhibitors , Antiviral Agents/therapeutic use , Azetidines , Cytokines/metabolism , Humans , Imidazoles , Indazoles , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Piperidines , SARS-CoV-2
4.
Lancet ; 401(10383): 1159-1171, 2023 04 08.
Article in English | MEDLINE | ID: covidwho-2303058

ABSTRACT

BACKGROUND: Etrasimod, a once-daily, oral, sphingosine 1-phosphate (S1P) receptor modulator that selectively activates S1P receptor subtypes 1, 4, and 5, with no detectable activity on S1P2,3, is in development for the treatment of immune-mediated diseases, including ulcerative colitis. In these two phase 3 trials, we aimed to evaluate the safety and efficacy of etrasimod in adult patients with moderately to severely active ulcerative colitis. METHODS: In two independent randomised, multicentre, double-blind, placebo-controlled, phase 3 trials, ELEVATE UC 52 and ELEVATE UC 12, adults with active moderate-to-severe ulcerative colitis and an inadequate or loss of response or intolerance to at least one approved ulcerative colitis therapy were randomly assigned (2:1) to once-daily oral etrasimod 2 mg or placebo. Patients in ELEVATE UC 52 were enrolled from 315 centres in 40 countries. Patients in ELEVATE UC 12 were enrolled from 407 centres in 37 countries. Randomisation was stratified by previous exposure to biologicals or Janus kinase inhibitor therapy (yes vs no), baseline corticosteroid use (yes vs no), and baseline disease activity (modified Mayo score [MMS]; 4-6 vs 7-9). ELEVATE UC 52 comprised a 12-week induction period followed by a 40-week maintenance period with a treat-through design. ELEVATE UC 12 independently assessed induction at week 12. The primary efficacy endpoints were the proportion of patients with clinical remission at weeks 12 and 52 in ELEVATE UC 52 and week 12 in ELEVATE UC 12. Safety was evaluated in both trials. ELEVATE UC 52 and ELEVATE UC 12 were registered with ClinicalTrials.gov, NCT03945188 and NCT03996369, respectively. FINDINGS: Patients in ELEVATE UC 52 were enrolled between June 13, 2019, and Jan 28, 2021. Patients in ELEVATE UC 12 were enrolled between Sept 15, 2020, and Aug 12, 2021. ELEVATE UC 52 and ELEVATE UC 12 screened 821 patients and 606 patients, respectively, with 433 and 354 subsequently undergoing random assignment. The full analysis set of ELEVATE UC 52 comprised 289 patients assigned to etrasimod and 144 to placebo. In ELEVATE UC 12, 238 patients were assigned to etrasimod and 116 to placebo. In ELEVATE UC 52, a significantly greater proportion of patients in the etrasimod group achieved clinical remission compared with patients in the placebo group at completion of the 12-week induction period (74 [27%] of 274 patients vs ten [7%] of 135 patients; p<0·0001) and at week 52 (88 [32%] of 274 patients vs nine [7%] of 135 patients; p<0·0001). In ELEVATE UC 12, 55 (25%) of 222 patients in the etrasimod group had clinical remission compared with 17 (15%) of 112 patients in the placebo group at the end of the 12-week induction period (p=0·026). Adverse events were reported in 206 (71%) of 289 patients in the etrasimod group and 81 (56%) of 144 patients in the placebo group in ELEVATE UC 52 and 112 (47%) of 238 patients in the etrasimod group and 54 (47%) of 116 patients in the placebo group in ELEVATE UC 12. No deaths or malignancies were reported. INTERPRETATION: Etrasimod was effective and well tolerated as an induction and maintenance therapy in patients with moderately to severely active ulcerative colitis. Etrasimod is a treatment option with a unique combination of attributes that might address the persistent unmet needs of patients with ulcerative colitis. FUNDING: Arena Pharmaceuticals.


Subject(s)
Colitis, Ulcerative , Janus Kinase Inhibitors , Adult , Humans , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Acetates/therapeutic use , Indoles , Janus Kinase Inhibitors/therapeutic use , Double-Blind Method , Remission Induction , Treatment Outcome
5.
Australas J Dermatol ; 64(1): 146-150, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2251847

ABSTRACT

Recent phase 2b and phase 3 clinical trials support the safety and efficacy of the selective Janus kinase (JAK)-1 inhibitor upadacitinib (UPA) in the treatment of moderate to severe atopic dermatitis (AD). However, to date, there is little experience with UPA therapy for AD in Australia. We report findings from a retrospective study to better understand the therapeutic response and side effects noted in a single-centre Australian cohort.


Subject(s)
Dermatitis, Atopic , Drug-Related Side Effects and Adverse Reactions , Janus Kinase Inhibitors , Humans , Australia , Dermatitis, Atopic/drug therapy , Retrospective Studies , Janus Kinase Inhibitors/therapeutic use , Treatment Outcome
6.
J Cutan Med Surg ; 27(1_suppl): 3S-24S, 2023.
Article in English | MEDLINE | ID: covidwho-2269611

ABSTRACT

Cytokines in the interleukin (IL)-23/IL-17 axis are central to psoriasis pathogenesis. Janus kinase (JAK) signal transducer and activator of transcription (STAT) regulates intracellular signalling of several cytokines (including IL-12, 23, 22, 6, 17, and interferon (IFN)-γ) in the IL-23/IL-17 axis, and, as a result, has become a therapeutic target for psoriasis treatment. Although several JAK1-3 inhibitors, with varying degrees of selectivity, have been developed for immune-mediated inflammatory diseases, use in psoriasis is limited by a low therapeutic index as anticipated by signals from other disease indications. More selective inhibition of the JAK family is an area of interest. Specifically, selective tyrosine kinase (TYK)2 inhibition suppresses IL-23/IL-17 axis signalling, and at therapeutic doses, has a favorable safety profile compared to therapeutic doses of JAK1-3 inhibitors. Phase III efficacy and safety data for the selective allosteric TYK2-inhibitor, deucravacitinib, in adult patients with moderate-to-severe plaque psoriasis is promising. Furthermore, phase II clinical trials for ropsacitinib (PF-06826647), a selective TYK2 inhibitor, and brepocitinib (PF-06700841), a JAK1/TYK2 inhibitor, have also demonstrated efficacy and an acceptable safety profile in adult patients with moderate-to-severe plaque psoriasis. Other novel TYK2 allosteric inhibitors, NDI-034858 and ESK-001, are currently being investigated in adult patients with plaque psoriasis. This article reviews the details of the JAK-STAT pathway in psoriasis pathophysiology, the rationale for selective targeting of JAKs in the treatment of psoriasis, and provides clinical perspective on clinical trial data for JAK and TYK2 inhibitors.


Subject(s)
Janus Kinase Inhibitors , Psoriasis , Adult , Humans , Janus Kinases/metabolism , Janus Kinases/therapeutic use , Interleukin-17/metabolism , Signal Transduction , STAT Transcription Factors/metabolism , STAT Transcription Factors/therapeutic use , TYK2 Kinase/metabolism , TYK2 Kinase/therapeutic use , Psoriasis/pathology , Interleukin-23 , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use
7.
Cochrane Database Syst Rev ; 6: CD015209, 2022 06 13.
Article in English | MEDLINE | ID: covidwho-2172307

ABSTRACT

BACKGROUND: With potential antiviral and anti-inflammatory properties, Janus kinase (JAK) inhibitors represent a potential treatment for symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. They may modulate the exuberant immune response to SARS-CoV-2 infection. Furthermore, a direct antiviral effect has been described. An understanding of the current evidence regarding the efficacy and safety of JAK inhibitors as a treatment for coronavirus disease 2019 (COVID-19) is required. OBJECTIVES: To assess the effects of systemic JAK inhibitors plus standard of care compared to standard of care alone (plus/minus placebo) on clinical outcomes in individuals (outpatient or in-hospital) with any severity of COVID-19, and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register (comprising MEDLINE, Embase, ClinicalTrials.gov, World Health Organization (WHO) International Clinical Trials Registry Platform, medRxiv, and Cochrane Central Register of Controlled Trials), Web of Science, WHO COVID-19 Global literature on coronavirus disease, and the US Department of Veterans Affairs Evidence Synthesis Program (VA ESP) Covid-19 Evidence Reviews to identify studies up to February 2022. We monitor newly published randomised controlled trials (RCTs) weekly using the Cochrane COVID-19 Study Register, and have incorporated all new trials from this source until the first week of April 2022. SELECTION CRITERIA: We included RCTs that compared systemic JAK inhibitors plus standard of care to standard of care alone (plus/minus placebo) for the treatment of individuals with COVID-19. We used the WHO definitions of illness severity for COVID-19. DATA COLLECTION AND ANALYSIS: We assessed risk of bias of primary outcomes using Cochrane's Risk of Bias 2 (RoB 2) tool. We used GRADE to rate the certainty of evidence for the following primary outcomes: all-cause mortality (up to day 28), all-cause mortality (up to day 60), improvement in clinical status: alive and without need for in-hospital medical care (up to day 28), worsening of clinical status: new need for invasive mechanical ventilation or death (up to day 28), adverse events (any grade), serious adverse events, secondary infections. MAIN RESULTS: We included six RCTs with 11,145 participants investigating systemic JAK inhibitors plus standard of care compared to standard of care alone (plus/minus placebo). Standard of care followed local protocols and included the application of glucocorticoids (five studies reported their use in a range of 70% to 95% of their participants; one study restricted glucocorticoid use to non-COVID-19 specific indications), antibiotic agents, anticoagulants, and antiviral agents, as well as non-pharmaceutical procedures. At study entry, about 65% of participants required low-flow oxygen, about 23% required high-flow oxygen or non-invasive ventilation, about 8% did not need any respiratory support, and only about 4% were intubated. We also identified 13 ongoing studies, and 9 studies that are completed or terminated and where classification is pending. Individuals with moderate to severe disease Four studies investigated the single agent baricitinib (10,815 participants), one tofacitinib (289 participants), and one ruxolitinib (41 participants). Systemic JAK inhibitors probably decrease all-cause mortality at up to day 28 (95 of 1000 participants in the intervention group versus 131 of 1000 participants in the control group; risk ratio (RR) 0.72, 95% confidence interval (CI) 0.57 to 0.91; 6 studies, 11,145 participants; moderate-certainty evidence), and decrease all-cause mortality at up to day 60 (125 of 1000 participants in the intervention group versus 181 of 1000 participants in the control group; RR 0.69, 95% CI 0.56 to 0.86; 2 studies, 1626 participants; high-certainty evidence). Systemic JAK inhibitors probably make little or no difference in improvement in clinical status (discharged alive or hospitalised, but no longer requiring ongoing medical care) (801 of 1000 participants in the intervention group versus 778 of 1000 participants in the control group; RR 1.03, 95% CI 1.00 to 1.06; 4 studies, 10,802 participants; moderate-certainty evidence). They probably decrease the risk of worsening of clinical status (new need for invasive mechanical ventilation or death at day 28) (154 of 1000 participants in the intervention group versus 172 of 1000 participants in the control group; RR 0.90, 95% CI 0.82 to 0.98; 2 studies, 9417 participants; moderate-certainty evidence). Systemic JAK inhibitors probably make little or no difference in the rate of adverse events (any grade) (427 of 1000 participants in the intervention group versus 441 of 1000 participants in the control group; RR 0.97, 95% CI 0.88 to 1.08; 3 studies, 1885 participants; moderate-certainty evidence), and probably decrease the occurrence of serious adverse events (160 of 1000 participants in the intervention group versus 202 of 1000 participants in the control group; RR 0.79, 95% CI 0.68 to 0.92; 4 studies, 2901 participants; moderate-certainty evidence). JAK inhibitors may make little or no difference to the rate of secondary infection (111 of 1000 participants in the intervention group versus 113 of 1000 participants in the control group; RR 0.98, 95% CI 0.89 to 1.09; 4 studies, 10,041 participants; low-certainty evidence). Subgroup analysis by severity of COVID-19 disease or type of JAK inhibitor did not identify specific subgroups which benefit more or less from systemic JAK inhibitors. Individuals with asymptomatic or mild disease We did not identify any trial for this population. AUTHORS' CONCLUSIONS: In hospitalised individuals with moderate to severe COVID-19, moderate-certainty evidence shows that systemic JAK inhibitors probably decrease all-cause mortality. Baricitinib was the most often evaluated JAK inhibitor. Moderate-certainty evidence suggests that they probably make little or no difference in improvement in clinical status. Moderate-certainty evidence indicates that systemic JAK inhibitors probably decrease the risk of worsening of clinical status and make little or no difference in the rate of adverse events of any grade, whilst they probably decrease the occurrence of serious adverse events. Based on low-certainty evidence, JAK inhibitors may make little or no difference in the rate of secondary infection. Subgroup analysis by severity of COVID-19 or type of agent failed to identify specific subgroups which benefit more or less from systemic JAK inhibitors. Currently, there is no evidence on the efficacy and safety of systemic JAK inhibitors for individuals with asymptomatic or mild disease (non-hospitalised individuals).


Subject(s)
COVID-19 Drug Treatment , Coinfection , Janus Kinase Inhibitors , Antiviral Agents/therapeutic use , Humans , Janus Kinase Inhibitors/therapeutic use , Oxygen , Randomized Controlled Trials as Topic , SARS-CoV-2 , United States
9.
Mol Cancer Ther ; 21(12): 1757-1764, 2022 Dec 02.
Article in English | MEDLINE | ID: covidwho-2153185

ABSTRACT

The JAK/STAT axis is implicated in cancer, inflammation, and immunity. Numerous cytokines/growth factors affect JAK/STAT signaling. JAKs (JAK1, JAK2, JAK3, and TYK2) noncovalently associate with cytokine receptors, mediate receptor tyrosine phosphorylation, and recruit ≥1 STAT proteins (STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6). Tyrosine-phosphorylated STATs dimerize and are then transported into the nucleus to function as transcription factors. Signaling is attenuated by specific suppressor of cytokine signaling proteins, creating a negative feedback loop. Both germline mutations and polymorphisms of JAK family members correlate with specific diseases: Systemic lupus erythematosus (TYK2 polymorphisms); severe combined immunodeficiency (JAK3 mutations); pediatric acute lymphoblastic leukemia (TYK2 mutations); and hereditary thrombocytosis (JAK2 mutations). Somatic gain-of-function JAK mutations mainly occur in hematologic malignancies, with the activating JAK2 V617F being a myeloproliferative disorder hallmark; it is also seen in clonal hematopoiesis of indeterminate potential. Several T-cell malignancies, as well as B-cell acute lymphoblastic leukemia, and acute megakaryoblastic leukemia also harbor JAK family somatic alterations. On the other hand, JAK2 copy-number loss is associated with immune checkpoint inhibitor resistance. JAK inhibitors (jakinibs) have been deployed in many conditions with JAK activation; they are approved in myeloproliferative disorders, rheumatoid and psoriatic arthritis, atopic dermatitis, ulcerative colitis, graft-versus-host disease, alopecia areata, ankylosing spondylitis, and in patients hospitalized for COVID-19. Clinical trials are investigating jakinibs in multiple other autoimmune/inflammatory conditions. Furthermore, dermatologic and neurologic improvements have been observed in children with Aicardi-Goutieres syndrome (a genetic interferonopathy) treated with JAK inhibitors.


Subject(s)
Janus Kinases , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , COVID-19 , Janus Kinase 1 , Janus Kinase 2 , Janus Kinase Inhibitors/therapeutic use , Phosphorylation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , STAT Transcription Factors/metabolism , Tyrosine/metabolism
10.
Rev Med Suisse ; 18(800): 1979-1983, 2022 Oct 19.
Article in French | MEDLINE | ID: covidwho-2081636

ABSTRACT

Janus kinase inhibitors (JAKi), such as tofacitinib, baricitinib, upadacitinib or ruxolitinib, are small molecules active on specific intracellular targets and used orally for the treatment of autoimmune or myeloproliferative diseases. Their remarkable therapeutic efficacy is offset by a significant risk of toxicities, essentially dose-dependent and a variable pharmacokinetic profile. The JAKi represent a new therapeutic armamentarium for treating autoimmune, myeloproliferative and inflammatory diseases (incl. COVID-19), but require thorough treatment individualization and close monitoring. Therapeutic Drug Monitoring (TDM) of JAKi could allow a personalized prescription and improve the efficacy-toxicity profile.


Les inhibiteurs des Janus kinases (JAKi), tels que le tofacitinib, le baricitinib, l'upadacitinib ou le ruxolitinib, représentent une nouvelle classe de petites molécules actives sur des cibles intra-cellulaires spécifiques, utilisables par voie orale pour traiter des maladies autoimmunes ou néoplasies myéloprolifératives. Leur efficacité thérapeutique remarquable est contrebalancée par un risque significatif de toxicités essentiellement dose-dépendantes et un profil pharmacocinétique variable. Les JAKi constituent une nouvelle arme thérapeutique pour le traitement des maladies autoimmunes, myéloprolifératives et inflammatoires (Covid-19), mais nécessitent une individualisation et un suivi attentifs. Le suivi thérapeutique des médicaments des JAKi pourrait permettre de personnaliser leur prescription et améliorer leur profil efficacité-toxicité.


Subject(s)
Arthritis, Rheumatoid , COVID-19 Drug Treatment , Janus Kinase Inhibitors , Humans , Janus Kinase Inhibitors/therapeutic use , Precision Medicine , Arthritis, Rheumatoid/drug therapy
11.
Lancet ; 400(10349): 359-368, 2022 Jul 30.
Article in English | MEDLINE | ID: covidwho-2062003

ABSTRACT

BACKGROUND: We aimed to evaluate the use of baricitinib, a Janus kinase (JAK) 1-2 inhibitor, for the treatment of patients admitted to hospital with COVID-19. METHODS: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple possible treatments in patients hospitalised with COVID-19 in the UK. Eligible and consenting patients were randomly allocated (1:1) to either usual standard of care alone (usual care group) or usual care plus baricitinib 4 mg once daily by mouth for 10 days or until discharge if sooner (baricitinib group). The primary outcome was 28-day mortality assessed in the intention-to-treat population. A meta-analysis was done, which included the results from the RECOVERY trial and all previous randomised controlled trials of baricitinib or other JAK inhibitor in patients hospitalised with COVID-19. The RECOVERY trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936) and is ongoing. FINDINGS: Between Feb 2 and Dec 29, 2021, from 10 852 enrolled, 8156 patients were randomly allocated to receive usual care plus baricitinib versus usual care alone. At randomisation, 95% of patients were receiving corticosteroids and 23% were receiving tocilizumab (with planned use within the next 24 h recorded for a further 9%). Overall, 514 (12%) of 4148 patients allocated to baricitinib versus 546 (14%) of 4008 patients allocated to usual care died within 28 days (age-adjusted rate ratio 0·87; 95% CI 0·77-0·99; p=0·028). This 13% proportional reduction in mortality was somewhat smaller than that seen in a meta-analysis of eight previous trials of a JAK inhibitor (involving 3732 patients and 425 deaths), in which allocation to a JAK inhibitor was associated with a 43% proportional reduction in mortality (rate ratio 0·57; 95% CI 0·45-0·72). Including the results from RECOVERY in an updated meta-analysis of all nine completed trials (involving 11 888 randomly assigned patients and 1485 deaths) allocation to baricitinib or another JAK inhibitor was associated with a 20% proportional reduction in mortality (rate ratio 0·80; 95% CI 0·72-0·89; p<0·0001). In RECOVERY, there was no significant excess in death or infection due to non-COVID-19 causes and no significant excess of thrombosis, or other safety outcomes. INTERPRETATION: In patients hospitalised with COVID-19, baricitinib significantly reduced the risk of death but the size of benefit was somewhat smaller than that suggested by previous trials. The total randomised evidence to date suggests that JAK inhibitors (chiefly baricitinib) reduce mortality in patients hospitalised for COVID-19 by about one-fifth. FUNDING: UK Research and Innovation (Medical Research Council) and National Institute of Health Research.


Subject(s)
COVID-19 Drug Treatment , Janus Kinase Inhibitors , Azetidines , Hospitals , Humans , Janus Kinase Inhibitors/therapeutic use , Purines , Pyrazoles , Randomized Controlled Trials as Topic , SARS-CoV-2 , Sulfonamides , Treatment Outcome
12.
RMD Open ; 8(2)2022 09.
Article in English | MEDLINE | ID: covidwho-2029522

ABSTRACT

OBJECTIVES: The effect of different modes of immunosuppressive therapy in autoimmune inflammatory rheumatic diseases (AIRDs) remains unclear. We investigated the impact of immunosuppressive therapies on humoral and cellular responses after two-dose vaccination. METHODS: Patients with rheumatoid arthritis, axial spondyloarthritis or psoriatic arthritis treated with TNFi, IL-17i (biological disease-modifying antirheumatic drugs, b-DMARDs), Janus-kinase inhibitors (JAKi) (targeted synthetic, ts-DMARD) or methotrexate (MTX) (conventional synthetic DMARD, csDMARD) alone or in combination were included. Almost all patients received mRNA-based vaccine, four patients had a heterologous scheme. Neutralising capacity and levels of IgG against SARS-CoV-2 spike-protein were evaluated together with quantification of activation markers on T-cells and their production of key cytokines 4 weeks after first and second vaccination. RESULTS: 92 patients were included, median age 50 years, 50% female, 33.7% receiving TNFi, 26.1% IL-17i, 26.1% JAKi (all alone or in combination with MTX), 14.1% received MTX only. Although after first vaccination only 37.8% patients presented neutralising antibodies, the majority (94.5%) developed these after the second vaccination. Patients on IL17i developed the highest titres compared with the other modes of action. Co-administration of MTX led to lower, even if not significant, titres compared with b/tsDMARD monotherapy. Neutralising antibodies correlated well with IgG titres against SARS-CoV-2 spike-protein. T-cell immunity revealed similar frequencies of activated T-cells and cytokine profiles across therapies. CONCLUSIONS: Even after insufficient seroconversion for neutralising antibodies and IgG against SARS-CoV-2 spike-protein in patients with AIRDs on different medications, a second vaccination covered almost all patients regardless of DMARDs therapy, with better outcomes in those on IL-17i. However, no difference of bDMARD/tsDMARD or csDMARD therapy was found on the cellular immune response.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , COVID-19 , Janus Kinase Inhibitors , Antibodies, Neutralizing , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , COVID-19/prevention & control , COVID-19 Vaccines , Female , Humans , Immunoglobulin G/therapeutic use , Janus Kinase Inhibitors/therapeutic use , Male , Methotrexate/therapeutic use , Middle Aged , SARS-CoV-2 , Vaccination
13.
Clin Rheumatol ; 41(12): 3707-3714, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1990658

ABSTRACT

OBJECTIVES: Recently, a number of studies have explored the possible attenuation of the immune response by disease-modifying antirheumatic drugs (DMARDs) in patients with rheumatoid arthritis (RA). Our study objective was to investigate the presumed attenuated humoral response to vaccination against SARS-CoV-2 in patients with RA treated with Janus kinase (JAK) inhibitors with or without methotrexate (MTX). The immune responses were compared with controls without RA. METHOD: The humoral vaccination response was evaluated by determining titres of neutralising antibodies against the S1 antigen of SARS-CoV-2. One hundred and thirteen fully vaccinated individuals were included at 6 ± 1 weeks after second vaccination (BioNTech/Pfizer (69.9%), AstraZeneca (21.2%), and Moderna (8.9%)). In a cross-sectional and single-centre study design, we compared titres of neutralising antibodies between patients with (n = 51) and without (n = 62) medication with JAK inhibitors. RESULTS: Treatment with JAK inhibitors led to a significantly reduced humoral response to vaccination (P = 0.004). A maximum immune response was seen in 77.4% of control patients, whereas this percentage was reduced to 54.9% in study participants on medication with JAK inhibitors (effect size d = 0.270). Further subanalyses revealed that patients on combination treatment (JAK inhibitors and MTX, 9 of 51 subjects) demonstrated an even significantly impaired immune response as compared to patients on monotherapy with JAK inhibitors (P = 0.028; d = 0.267). CONCLUSIONS: JAK inhibitors significantly reduce the humoral response following dual vaccination against SARS-CoV-2. The combination with MTX causes an additional, significant reduction in neutralising IgG titres. Our data suggest cessation of JAK inhibitors in patients with RA in the context of vaccination against SARS-CoV-2. Key Points • It was shown that DMARD therapy with JAK inhibitors in patients with rheumatoid arthritis leads to an attenuation of the humoral vaccination response against SARS-CoV-2. • The effect under medication with JAK inhibitors was significant compared to the control group and overall moderate. • The combination of JAK inhibitors with MTX led to an additive and significant attenuation of the humoral response.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , COVID-19 , Janus Kinase Inhibitors , Humans , Janus Kinase Inhibitors/therapeutic use , SARS-CoV-2 , Cross-Sectional Studies , COVID-19/prevention & control , Arthritis, Rheumatoid/drug therapy , Antirheumatic Agents/therapeutic use , Methotrexate/therapeutic use , Janus Kinases , Vaccination , Antibodies, Neutralizing , Antibodies, Viral
14.
Pharmacol Res ; 183: 106362, 2022 09.
Article in English | MEDLINE | ID: covidwho-1956292

ABSTRACT

The Janus kinase (JAK) family of nonreceptor protein-tyrosine kinases consists of JAK1, JAK2, JAK3, and TYK2 (Tyrosine Kinase 2). Each of these proteins contains a JAK homology pseudokinase (JH2) domain that interacts with and regulates the activity of the adjacent protein kinase domain (JH1). The Janus kinase family is regulated by numerous cytokines including interferons, interleukins, and hormones such as erythropoietin and thrombopoietin. Ligand binding to cytokine receptors leads to the activation of associated Janus kinases, which then catalyze the phosphorylation of the receptors. The SH2 domain of signal transducers and activators of transcription (STAT) binds to the cytokine receptor phosphotyrosines thereby promoting STAT phosphorylation and activation by the Janus kinases. STAT dimers are then translocated into the nucleus where they participate in the regulation and expression of dozens of proteins. JAK1/3 signaling participates in the pathogenesis of inflammatory disorders while JAK1/2 signaling contributes to the development of myeloproliferative neoplasms as well as several malignancies including leukemias and lymphomas. An activating JAK2 V617F mutation occurs in 95% of people with polycythemia vera and about 50% of cases of myelofibrosis and essential thrombocythemia. Abrocitinib, ruxolitinib, and upadacitinib are JAK inhibitors that are FDA-approved for the treatment of atopic dermatitis. Baricitinib is used for the treatment of rheumatoid arthritis and covid 19. Tofacitinib and upadacitinib are JAK antagonists that are used for the treatment of rheumatoid arthritis and ulcerative colitis. Additionally, ruxolitinib is approved for the treatment of polycythemia vera while fedratinib, pacritinib, and ruxolitinib are approved for the treatment of myelofibrosis.


Subject(s)
Arthritis, Rheumatoid , COVID-19 , Janus Kinase Inhibitors , Polycythemia Vera , Primary Myelofibrosis , Arthritis, Rheumatoid/drug therapy , Humans , Janus Kinase 1 , Janus Kinase 2/metabolism , Janus Kinase Inhibitors/pharmacology , Janus Kinase Inhibitors/therapeutic use , Janus Kinases/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
16.
Cell Mol Biol Lett ; 27(1): 10, 2022 Feb 02.
Article in English | MEDLINE | ID: covidwho-1753103

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) pandemic has spread worldwide, and finding a safe therapeutic strategy and effective vaccine is critical to overcoming severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, elucidation of pathogenesis mechanisms, especially entry routes of SARS-CoV-2 may help propose antiviral drugs and novel vaccines. Several receptors have been demonstrated for the interaction of spike (S) protein of SARS-CoV-2 with host cells, including angiotensin-converting enzyme (ACE2), ephrin ligands and Eph receptors, neuropilin 1 (NRP-1), P2X7, and CD147. The expression of these entry receptors in the central nervous system (CNS) may make the CNS prone to SARS-CoV-2 invasion, leading to neurodegenerative diseases. The present review provides potential pathological mechanisms of SARS-CoV-2 infection in the CNS, including entry receptors and cytokines involved in neuroinflammatory conditions. Moreover, it explains several neurodegenerative disorders associated with COVID-19. Finally, we suggest inflammasome and JaK inhibitors as potential therapeutic strategies for neurodegenerative diseases.


Subject(s)
COVID-19 Drug Treatment , Central Nervous System/drug effects , Inflammasomes/drug effects , Neurodegenerative Diseases/drug therapy , Receptors, Virus/genetics , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/therapeutic use , Basigin/genetics , Basigin/metabolism , COVID-19/genetics , COVID-19/metabolism , COVID-19/virology , Central Nervous System/metabolism , Central Nervous System/virology , Ephrins/genetics , Ephrins/metabolism , Gene Expression Regulation , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/genetics , Humans , Immunologic Factors/therapeutic use , Inflammasomes/genetics , Inflammasomes/metabolism , Janus Kinase Inhibitors/therapeutic use , Janus Kinases/antagonists & inhibitors , Janus Kinases/genetics , Janus Kinases/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/virology , Neuropilin-1/genetics , Neuropilin-1/metabolism , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Receptors, Virus/antagonists & inhibitors , Receptors, Virus/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Signal Transduction
18.
Brain Behav Immun ; 87: 59-73, 2020 07.
Article in English | MEDLINE | ID: covidwho-1719339

ABSTRACT

As of April 15, 2020, the ongoing coronavirus disease 2019 (COVID-2019) pandemic has swept through 213 countries and infected more than 1,870,000 individuals, posing an unprecedented threat to international health and the economy. There is currently no specific treatment available for patients with COVID-19 infection. The lessons learned from past management of respiratory viral infections have provided insights into treating COVID-19. Numerous potential therapies, including supportive intervention, immunomodulatory agents, antiviral therapy, and convalescent plasma transfusion, have been tentatively applied in clinical settings. A number of these therapies have provided substantially curative benefits in treating patients with COVID-19 infection. Furthermore, intensive research and clinical trials are underway to assess the efficacy of existing drugs and identify potential therapeutic targets to develop new drugs for treating COVID-19. Herein, we summarize the current potential therapeutic approaches for diseases related to COVID-19 infection and introduce their mechanisms of action, safety, and effectiveness.


Subject(s)
Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Adrenal Cortex Hormones/therapeutic use , Angiotensin-Converting Enzyme 2 , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Anticoagulants/therapeutic use , Antimalarials/therapeutic use , Antiviral Agents/therapeutic use , Betacoronavirus , Bevacizumab/therapeutic use , COVID-19 , COVID-19 Vaccines , Chloroquine/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Humans , Hydroxychloroquine/therapeutic use , Immunization, Passive , Immunoglobulins, Intravenous/therapeutic use , Immunologic Factors/therapeutic use , Interferons/therapeutic use , Janus Kinase Inhibitors/therapeutic use , Killer Cells, Natural , Medicine, Chinese Traditional , Mesenchymal Stem Cell Transplantation , Nitric Oxide/therapeutic use , Pandemics , Peptidyl-Dipeptidase A , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Trace Elements/therapeutic use , Viral Vaccines/therapeutic use , Vitamins/therapeutic use , Zinc/therapeutic use , COVID-19 Drug Treatment , COVID-19 Serotherapy
19.
Biomed Pharmacother ; 147: 112614, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1682939

ABSTRACT

Post-Covid pulmonary fibrosis is evident following severe COVID-19. There is an urgent need to identify the cellular and pathophysiological characteristics of chronic lung squeals of Covid-19 for the development of future preventive and/or therapeutic interventions. Tissue-resident memory T (TRM) cells can mediate local immune protection against infections and cancer. Less beneficially, lung TRM cells cause chronic airway inflammation and fibrosis by stimulating pathologic inflammation. The effects of Janus kinase (JAK), an inducer pathway of cytokine storm, inhibition on acute Covid-19 cases have been previously evaluated. Here, we propose that Tofacitinib by targeting the CD8+ TRM cells could be a potential candidate for the treatment of chronic lung diseases induced by acute SARS-CoV-2 infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Drug Treatment , Janus Kinase Inhibitors/therapeutic use , Lung Injury/drug therapy , Piperidines/therapeutic use , Pyrimidines/therapeutic use , T-Lymphocyte Subsets/immunology , COVID-19/complications , COVID-19/immunology , Humans , Immunologic Memory/immunology , Lung/immunology , Lung Injury/etiology , Lung Injury/immunology , SARS-CoV-2 , T-Lymphocytes/immunology
20.
Ann Rheum Dis ; 81(1): 117-123, 2022 01.
Article in English | MEDLINE | ID: covidwho-1605885

ABSTRACT

OBJECTIVE: To compare the treatment efficacy and safety of tofacitinib (TOF) versus methotrexate (MTX) in Takayasu arteritis (TAK). METHODS: Fifty-three patients with active disease from an ongoing prospective TAK cohort in China were included in this study. Twenty-seven patients were treated with glucocorticoids (GCs) and TOF, and 26 patients were treated with GCs with MTX. The observation period was 12 months. Complete remission (CR), inflammatory parameter changes, GCs tapering and safety were assessed at the 6th, 9th and 12th month. Vascular lesions were evaluated at the 6th and 12th month, and relapse was analysed during 12 months. RESULTS: The CR rate was higher in the TOF group than in the MTX group (6 months: 85.19% vs 61.54%, p=0.07; 12 months: 88.46% vs 56.52%, p=0.02). During 12 months' treatment, patients in the TOF group achieved a relatively lower relapse rate (11.54% vs 34.78%, p=0.052) and a longer median relapse-free duration (11.65±0.98 vs 10.48±2.31 months, p=0.03). Average GCs dose at the 3rd, 6th and 12th month was lower in the TOF group than that in the MTX group (p<0.05). A difference was not observed in disease improvement or disease progression on imaging between the two groups (p>0.05). Prevalence of side effects was low in both groups (3.70% vs 15.38%, p=0.19). CONCLUSION: TOF was superior to MTX for CR induction, a tendency to prevent relapse and tapering of the GCs dose in TAK treatment. A good safety profile for TOF was also documented in patients with TAK.


Subject(s)
Antirheumatic Agents/therapeutic use , Janus Kinase Inhibitors/therapeutic use , Methotrexate/therapeutic use , Piperidines/therapeutic use , Pyrimidines/therapeutic use , Takayasu Arteritis/drug therapy , Adolescent , Adult , Antirheumatic Agents/adverse effects , Disease Progression , Drug Therapy, Combination , Female , Glucocorticoids/therapeutic use , Humans , Janus Kinase Inhibitors/adverse effects , Male , Methotrexate/adverse effects , Middle Aged , Piperidines/adverse effects , Prospective Studies , Pyrimidines/adverse effects , Recurrence , Time Factors , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL