Your browser doesn't support javascript.
Understanding the binding mechanism for potential inhibition of SARS-CoV-2 Mpro and exploring the modes of ACE2 inhibition by hydroxychloroquine.
Choudhury, Manisha; Dhanabalan, Anantha K; Goswami, Nabajyoti.
  • Choudhury M; Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India.
  • Dhanabalan AK; CAS in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India.
  • Goswami N; Bioinformatics Infrastructure Facility, College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam, India.
J Cell Biochem ; 123(2): 347-358, 2022 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1499273
ABSTRACT
As per the World Health Organization report, around 226 844 344 confirmed positive cases and 4 666 334 deaths are reported till September 17, 2021 due to the recent viral outbreak. A novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) is responsible for the associated coronavirus disease (COVID-19), which causes serious or even fatal respiratory tract infection and yet no approved therapeutics or effective treatment is currently available to combat the outbreak. Due to the emergency, the drug repurposing approach is being explored for COVID-19. In this study, we attempt to understand the potential mechanism and also the effect of the approved antiviral drugs against the SARS-CoV-2 main protease (Mpro). To understand the mechanism of inhibition of the malaria drug hydroxychloroquine (HCQ) against SARS-CoV-2, we performed molecular interaction studies. The studies revealed that HCQ docked at the active site of the Human ACE2 receptor as a possible way of inhibition. Our in silico analysis revealed that the three drugs Lopinavir, Ritonavir, and Remdesivir showed interaction with the active site residues of Mpro. During molecular dynamics simulation, based on the binding free energy contributions, Lopinavir showed better results than Ritonavir and Remdesivir.
Asunto(s)
Palabras clave

Texto completo: Disponible Colección: Bases de datos internacionales Base de datos: MEDLINE Asunto principal: Antivirales / Receptores Virales / Adenosina Monofosfato / Ritonavir / Alanina / Lopinavir / Enzima Convertidora de Angiotensina 2 / Proteasas 3C de Coronavirus / SARS-CoV-2 / Tratamiento Farmacológico de COVID-19 Límite: Humanos Idioma: Inglés Revista: J Cell Biochem Año: 2022 Tipo del documento: Artículo País de afiliación: Jcb.30174

Similares

MEDLINE

...
LILACS

LIS


Texto completo: Disponible Colección: Bases de datos internacionales Base de datos: MEDLINE Asunto principal: Antivirales / Receptores Virales / Adenosina Monofosfato / Ritonavir / Alanina / Lopinavir / Enzima Convertidora de Angiotensina 2 / Proteasas 3C de Coronavirus / SARS-CoV-2 / Tratamiento Farmacológico de COVID-19 Límite: Humanos Idioma: Inglés Revista: J Cell Biochem Año: 2022 Tipo del documento: Artículo País de afiliación: Jcb.30174