Your browser doesn't support javascript.
A Lab-in-a-Fiber optofluidic device using droplet microfluidics and laser-induced fluorescence for virus detection.
Parker, Helen E; Sengupta, Sanghamitra; Harish, Achar V; Soares, Ruben R G; Joensson, Haakan N; Margulis, Walter; Russom, Aman; Laurell, Fredrik.
  • Parker HE; Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44, Stockholm, Sweden. h.parker@hw.ac.uk.
  • Sengupta S; Scottish Universities Physics Alliance (SUPA), Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK. h.parker@hw.ac.uk.
  • Harish AV; Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44, Stockholm, Sweden. s.sengupta@amolf.nl.
  • Soares RRG; AMOLF, Science Park 104, 1098 XG, Amsterdam, The Netherlands. s.sengupta@amolf.nl.
  • Joensson HN; Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44, Stockholm, Sweden.
  • Margulis W; Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, Royal Institute of Technology (KTH), 171 65, Solna, Sweden.
  • Russom A; Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, Royal Institute of Technology (KTH), 171 65, Solna, Sweden.
  • Laurell F; Laser Physics Group, Department of Applied Physics, Royal Institute of Technology (KTH), 100 44, Stockholm, Sweden.
Sci Rep ; 12(1): 3539, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1730309
ABSTRACT
Microfluidics has emerged rapidly over the past 20 years and has been investigated for a variety of applications from life sciences to environmental monitoring. Although continuous-flow microfluidics is ubiquitous, segmented-flow or droplet microfluidics offers several attractive features. Droplets can be independently manipulated and analyzed with very high throughput. Typically, microfluidics is carried out within planar networks of microchannels, namely, microfluidic chips. We propose that fibers offer an interesting alternative format with key advantages for enhanced optical coupling. Herein, we demonstrate the generation of monodisperse droplets within a uniaxial optofluidic Lab-in-a-Fiber scheme. We combine droplet microfluidics with laser-induced fluorescence (LIF) detection achieved through the development of an optical side-coupling fiber, which we term a periscope fiber. This arrangement provides stable and compact alignment. Laser-induced fluorescence offers high sensitivity and low detection limits with a rapid response time making it an attractive detection method for in situ real-time measurements. We use the well-established fluorophore, fluorescein, to characterize the Lab-in-a-Fiber device and determine the generation of [Formula see text] 0.9 nL droplets. We present characterization data of a range of fluorescein concentrations, establishing a limit of detection (LOD) of 10 nM fluorescein. Finally, we show that the device operates within a realistic and relevant fluorescence regime by detecting reverse-transcription loop-mediated isothermal amplification (RT-LAMP) products in the context of COVID-19 diagnostics. The device represents a step towards the development of a point-of-care droplet digital RT-LAMP platform.
Asunto(s)

Texto completo: Disponible Colección: Bases de datos internacionales Base de datos: MEDLINE Asunto principal: Virus / Dispositivos Laboratorio en un Chip Tipo de estudio: Estudios diagnósticos Idioma: Inglés Revista: Sci Rep Año: 2022 Tipo del documento: Artículo País de afiliación: S41598-022-07306-0

Similares

MEDLINE

...
LILACS

LIS


Texto completo: Disponible Colección: Bases de datos internacionales Base de datos: MEDLINE Asunto principal: Virus / Dispositivos Laboratorio en un Chip Tipo de estudio: Estudios diagnósticos Idioma: Inglés Revista: Sci Rep Año: 2022 Tipo del documento: Artículo País de afiliación: S41598-022-07306-0