Your browser doesn't support javascript.
Tweeting for Health Using Real-time Mining and Artificial Intelligence-Based Analytics: Design and Development of a Big Data Ecosystem for Detecting and Analyzing Misinformation on Twitter.
Morita, Plinio Pelegrini; Zakir Hussain, Irfhana; Kaur, Jasleen; Lotto, Matheus; Butt, Zahid Ahmad.
  • Morita PP; School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON, Canada.
  • Zakir Hussain I; Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada.
  • Kaur J; Research Institute for Aging, University of Waterloo, Waterloo, ON, Canada.
  • Lotto M; Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada.
  • Butt ZA; Centre for Digital Therapeutics, Techna Institute, University Health Network, Toronto, ON, Canada.
J Med Internet Res ; 25: e44356, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: covidwho-20240023
ABSTRACT

BACKGROUND:

Digital misinformation, primarily on social media, has led to harmful and costly beliefs in the general population. Notably, these beliefs have resulted in public health crises to the detriment of governments worldwide and their citizens. However, public health officials need access to a comprehensive system capable of mining and analyzing large volumes of social media data in real time.

OBJECTIVE:

This study aimed to design and develop a big data pipeline and ecosystem (UbiLab Misinformation Analysis System [U-MAS]) to identify and analyze false or misleading information disseminated via social media on a certain topic or set of related topics.

METHODS:

U-MAS is a platform-independent ecosystem developed in Python that leverages the Twitter V2 application programming interface and the Elastic Stack. The U-MAS expert system has 5 major components data extraction framework, latent Dirichlet allocation (LDA) topic model, sentiment analyzer, misinformation classification model, and Elastic Cloud deployment (indexing of data and visualizations). The data extraction framework queries the data through the Twitter V2 application programming interface, with queries identified by public health experts. The LDA topic model, sentiment analyzer, and misinformation classification model are independently trained using a small, expert-validated subset of the extracted data. These models are then incorporated into U-MAS to analyze and classify the remaining data. Finally, the analyzed data are loaded into an index in the Elastic Cloud deployment and can then be presented on dashboards with advanced visualizations and analytics pertinent to infodemiology and infoveillance analysis.

RESULTS:

U-MAS performed efficiently and accurately. Independent investigators have successfully used the system to extract significant insights into a fluoride-related health misinformation use case (2016 to 2021). The system is currently used for a vaccine hesitancy use case (2007 to 2022) and a heat wave-related illnesses use case (2011 to 2022). Each component in the system for the fluoride misinformation use case performed as expected. The data extraction framework handles large amounts of data within short periods. The LDA topic models achieved relatively high coherence values (0.54), and the predicted topics were accurate and befitting to the data. The sentiment analyzer performed at a correlation coefficient of 0.72 but could be improved in further iterations. The misinformation classifier attained a satisfactory correlation coefficient of 0.82 against expert-validated data. Moreover, the output dashboard and analytics hosted on the Elastic Cloud deployment are intuitive for researchers without a technical background and comprehensive in their visualization and analytics capabilities. In fact, the investigators of the fluoride misinformation use case have successfully used the system to extract interesting and important insights into public health, which have been published separately.

CONCLUSIONS:

The novel U-MAS pipeline has the potential to detect and analyze misleading information related to a particular topic or set of related topics.
Asunto(s)
Palabras clave

Texto completo: Disponible Colección: Bases de datos internacionales Base de datos: MEDLINE Asunto principal: Medios de Comunicación Sociales / COVID-19 Tipo de estudio: Estudio pronóstico / Revisiones Tópicos: Vacunas Límite: Humanos Idioma: Inglés Revista: J Med Internet Res Asunto de la revista: Informática Médica Año: 2023 Tipo del documento: Artículo País de afiliación: 44356

Similares

MEDLINE

...
LILACS

LIS


Texto completo: Disponible Colección: Bases de datos internacionales Base de datos: MEDLINE Asunto principal: Medios de Comunicación Sociales / COVID-19 Tipo de estudio: Estudio pronóstico / Revisiones Tópicos: Vacunas Límite: Humanos Idioma: Inglés Revista: J Med Internet Res Asunto de la revista: Informática Médica Año: 2023 Tipo del documento: Artículo País de afiliación: 44356