Your browser doesn't support javascript.
Drug Repurposing for, ENT and Head and Neck, Infectious and Oncologic Diseases: Current Practices and Future Possibilities
Drug Repurposing for Emerging Infectious Diseases and Cancer ; : 253-282, 2023.
Artículo en Inglés | Scopus | ID: covidwho-20241132
ABSTRACT
The specialty of otolaryngology and head and neck surgery involves various subspecialties, encompassing clinical conditions ranging from medical to surgical issues in infections, noninfectious benign conditions and various benign and malignant tumors. Drug repurposing has proven to be significant in multiple fields and is still investigational in many promising possible solutions to different clinical challenges in this specialty. We discuss some classes of drugs that have been successfully repurposed for ENT pathologies. We also discuss the novel research goals that are being pursued in our department in the context of drug repurposing for airway infectious diseases including COVID-10 and mucormycosis. There has been a silent and underappreciated rise in drug-resistant invasive fungal infections (IFIs). Emerging Mucorales are difficult to diagnose and tolerant to many of the frontline antifungal therapies. There is an urgent need to combat these emerging pathogens and investigate the molecular mechanisms underlying their potentiated virulence traits to identify potential therapeutic targets susceptible to anti-fungal compounds. The drug development process for IFIs remains largely expensive, and is inherently risky. These challenges declare an urgent need for discovery of new antifungal drugs and encourage drug repurposing as alternative approach to fungal control. The understanding of molecular underpinnings behind fungi and human host continue to grow, however, further research endeavors are underway to fully explore the fungal pathogenesis, (including the role of iron) to gather new insights to achieve improved therapeutics. Above all, creative screening tools and out-of-the-box ideas aimed at increasing the possibility of identifying potential first-in-class antifungals are highly encouraged. The recently emerging fungal co-infections in the COVID-19 disease patients has revived the interest in the pathophysiology and clinical management of the IFIs, and identification of potential druggable nodes in olfactory niche to inhibit the spread of COVID-19 and associated co-infections by leveraging in vitro-disease models of host-pathogen interaction. We employed our recently established COVID-19 disease model to decipher potential anti-metabolic molecules that can be repurposed as novel bilateral drugs having anti-fungal and host-directed features with extended applicability in diabetes, COVID-19, and mucormycosis with and without COVID-19. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023.
Palabras clave

Texto completo: Disponible Colección: Bases de datos de organismos internacionales Base de datos: Scopus Tipo de estudio: Estudio pronóstico Idioma: Inglés Revista: Drug Repurposing for Emerging Infectious Diseases and Cancer Año: 2023 Tipo del documento: Artículo

Similares

MEDLINE

...
LILACS

LIS


Texto completo: Disponible Colección: Bases de datos de organismos internacionales Base de datos: Scopus Tipo de estudio: Estudio pronóstico Idioma: Inglés Revista: Drug Repurposing for Emerging Infectious Diseases and Cancer Año: 2023 Tipo del documento: Artículo