Your browser doesn't support javascript.
SARS-CoV-2 Dynamics in the Mucus Layer of the Human Upper Respiratory Tract Based on Host–Cell Dynamics
Sustainability ; 14(7):3896, 2022.
Article Dans Anglais | ProQuest Central | ID: covidwho-1785921
ABSTRACT
A thorough understanding of the inhalation dynamics of infectious aerosols indoors and infection dynamics within the host by inhaled viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays an important role in the assessment and control of infection risks indoors. Here, by combining computational fluid–particle dynamics (CFPD) and host–cell dynamics (HCD), SARS-CoV-2 infection dynamics in the mucus layer of the human upper airway were studied. To reproduce the diffusive and convective transport of the virus in the nasal cavitynasopharynx by mucociliary motion, a three-dimensional (3D)-shell model with a mucus layer was developed. The initial virus concentrations for HCD calculation were estimated based on the deposition distribution of droplets with representative sizes analyzed by CFPD. To develop a new HCD model, the target-cell-limited model was integrated with the convectiondiffusion equation. Additionally, the sensitivity of the infection rate β to the infection dynamics was systematically investigated. The results showed that the time series of SARS-CoV-2 concentration in the mucus layer strongly depended on diffusion, convection, and β. Although the SARS-CoV-2 dynamics obtained here have not been verified by corresponding clinical data, they can preliminarily reveal its transmission mode in the upper airway, which will contribute to the prevention and treatment of coronavirus disease 2019.
Mots clés

Texte intégral: Disponible Collection: Bases de données des oragnisations internationales Base de données: ProQuest Central langue: Anglais Revue: Sustainability Année: 2022 Type de document: Article

Documents relatifs à ce sujet

MEDLINE

...
LILACS

LIS


Texte intégral: Disponible Collection: Bases de données des oragnisations internationales Base de données: ProQuest Central langue: Anglais Revue: Sustainability Année: 2022 Type de document: Article