Your browser doesn't support javascript.
A new strategy to integrate silver nanowires with waterborne coating to improve their antimicrobial and antiviral properties
Pigment & Resin Technology ; 52(4):490-501, 2023.
Article Dans Anglais | ProQuest Central | ID: covidwho-20242763
ABSTRACT
PurposeThis study aims to focus on the preparation and characterization of the silver nanowire (AgNWs), as well as their application as antimicrobial and antivirus activities either with incorporation on the waterborne coating formulation or on their own.Design/methodology/approachPrepared AgNWs are characterized by different analytical instruments, such as ultraviolet-visible spectroscope, scanning electron microscope and X-ray diffraction spectrometer. All the paint formulation's physical and mechanical qualities were tested using American Society for Testing and Materials, a worldwide standard test procedure. The biological activities of the prepared AgNWs and the waterborne coating based on AgNWs were investigated. And, their effects on pathogenic bacteria, antioxidants, antiviral activity and cytotoxicity were also investigated.FindingsThe obtained results of the physical and mechanical characteristics of the paint formulation demonstrated the formulations' greatest performance, as well as giving good scrub resistance and film durability. In the antimicrobial activity, the paint did not have any activity against bacterial pathogen, whereas the AgNWs and AgNWs with paint have similar activity against bacterial pathogen with inhibition zone range from 10 to 14 mm. The development of antioxidant and cytotoxicity activity of the paint incorporated with AgNWs were also observed. The cytopathic effects of herpes simplex virus type 1 (HSV-1) were reduced in all three investigated modes of action when compared to the positive control group (HSV-1-infected cells), suggesting that these compounds have promising antiviral activity against a wide range of viruses, including DNA and RNA viruses.Originality/valueThe new waterborne coating based on nanoparticles has the potential to be promising in the manufacturing and development of paints, allowing them to function to prevent the spread of microbial infection, which is exactly what the world requires at this time.
Mots clés

Texte intégral: Disponible Collection: Bases de données des oragnisations internationales Base de données: ProQuest Central Type d'étude: Études expérimentales langue: Anglais Revue: Pigment & Resin Technology Année: 2023 Type de document: Article

Documents relatifs à ce sujet

MEDLINE

...
LILACS

LIS


Texte intégral: Disponible Collection: Bases de données des oragnisations internationales Base de données: ProQuest Central Type d'étude: Études expérimentales langue: Anglais Revue: Pigment & Resin Technology Année: 2023 Type de document: Article