Your browser doesn't support javascript.
SARS-CoV-2 cell-to-cell spread occurs rapidly and is insensitive to antibody neutralization (preprint)
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.06.01.446516
ABSTRACT
Viruses increase the efficiency of close-range transmission between cells by manipulating cellular physiology and behavior, and SARS-CoV-2 uses cell fusion as one mechanism for cell-to-cell spread. Here we visualized infection using time-lapse microscopy of a human lung cell line and used live virus neutralization to determine the sensitivity of SARS-CoV-2 cell-to-cell spread to neutralizing antibodies. SARS-CoV-2 infection rapidly led to cell fusion, forming multinucleated cells with clustered nuclei which started to be detected at 6h post-infection. To compare sensitivity of cell-to-cell spread to neutralization, we infected either with cell-free virus or with single infected cells expressing on their surface the SARS-CoV-2 spike protein. We tested two variants of SARS-CoV-2 B.1.117 containing only the D614G substitution, and the escape variant B.1.351. We used the much smaller area of single infected cells relative to infection foci to exclude any input infected cells which did not lead to transmission. The monoclonal antibody and convalescent plasma we tested neutralized cell-free SARS-CoV-2, with the exception of B.1.351 virus, which was poorly neutralized with plasma from non-B.1.351 infections. In contrast, cell-to-cell spread of SARS-CoV-2 showed no sensitivity to monoclonal antibody or convalescent plasma neutralization. These observations suggest that, once cells are infected, SARS-CoV-2 may be more difficult to neutralize in cell types and anatomical compartments permissive for cell-to-cell spread.
Sujets)

Texte intégral: Disponible Collection: Preprints Base de données: bioRxiv Sujet Principal: COVID-19 langue: Anglais Année: 2021 Type de document: Preprint

Documents relatifs à ce sujet

MEDLINE

...
LILACS

LIS


Texte intégral: Disponible Collection: Preprints Base de données: bioRxiv Sujet Principal: COVID-19 langue: Anglais Année: 2021 Type de document: Preprint