Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Einstein (Sao Paulo) ; 21: eAO0302, 2023.
Article in English | MEDLINE | ID: mdl-38055553

ABSTRACT

OBJECTIVE: We hypothesized that perinatal manipulations of the nitrergic system would affect adult animal behaviors. METHODS: We tested this hypothesis by perinatally administering N(G)-Nitro-L-arginine methyl ester (L-NAME), a non-specific antagonist of nitric oxide synthase for 15 days and assessed anxiety- and depression-like behaviors in adult mice. At 70 days of age, the mice were subjected to a battery of tests consisting of the open-field, light/dark box, forced swim, and tail-flick tests. The tests were performed at two-day intervals, and the order of the tests within the battery was determined according to the progressive invasiveness degree. RESULTS: L-NAME-treated animals exhibited decreased anxiety-like behavior in the light/dark box and open field tests, with no change in locomotor activity. Additionally, they demonstrated decreased depression-like behavior in the forced swim test and no change in pain perception in the tail-flick test. CONCLUSION: The nitrergic system is possibly involved in neural circuitry development that regulates behaviors since blocking perinatal nitric oxide production decreases anxiety- and depression-like behaviors in adult mice.


Subject(s)
Anxiety , Depression , Mice , Animals , NG-Nitroarginine Methyl Ester/pharmacology , Depression/drug therapy , Anxiety/drug therapy , Swimming , Nitric Oxide , Behavior, Animal
2.
Einstein (Säo Paulo) ; 21: eAO0302, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1528572

ABSTRACT

ABSTRACT Objective: We hypothesized that perinatal manipulations of the nitrergic system would affect adult animal behaviors. Methods: We tested this hypothesis by perinatally administering N(G)-Nitro-L-arginine methyl ester (L-NAME), a non-specific antagonist of nitric oxide synthase for 15 days and assessed anxiety- and depression-like behaviors in adult mice. At 70 days of age, the mice were subjected to a battery of tests consisting of the open-field, light/dark box, forced swim, and tail-flick tests. The tests were performed at two-day intervals, and the order of the tests within the battery was determined according to the progressive invasiveness degree. Results: L-NAME-treated animals exhibited decreased anxiety-like behavior in the light/dark box and open field tests, with no change in locomotor activity. Additionally, they demonstrated decreased depression-like behavior in the forced swim test and no change in pain perception in the tail-flick test. Conclusion: The nitrergic system is possibly involved in neural circuitry development that regulates behaviors since blocking perinatal nitric oxide production decreases anxiety- and depression-like behaviors in adult mice.

3.
Int J Dev Neurosci ; 82(6): 486-498, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35718760

ABSTRACT

Serotonin exerts a significant role in the mammalian central nervous system embryogenesis and brain ontogeny. Therefore, we investigate the effect of neonatal treatment of d-fenfluramine (d-FEN), a serotonin (5-HT) releaser, on the behavioral expression of adult male Swiss mice. For this purpose, we divided pregnant female Swiss mice into two groups (n = 6 each and ~35 g). Their offspring were treated with d-FEN (3 mg/kg, s.c.) from postnatal days (PND) 5 to 20. At PND 21, one male puppy of each litter was euthanized; the midbrain and the hippocampus were dissected for RNA analysis. At PND 70, the male offspring underwent a behavioral assessment in the open field, elevated plus-maze, light-dark box, tail suspension, and rotarod test. The programmed animals had a decrease in 5HT1a, serotonin transporter (SERT), and brain-derived neurotrophic factor (BDNF) expression in the mesencephalic raphe region. Alternatively, there was a reduction only in the tryptophan hydroxylase (TPH2) and BDNF expression in the hippocampus. In the light-dark box test, offspring of the treated group had higher latency to light and less time on the light side than the control. Also, it was observed less time of immobility in the tail suspension test. We also observed low motor skill learning in the rotarod test. These findings suggest that programming with d-FEN during the neonatal period alters a mesencephalic and hippocampal serotonergic system, promoting anxiety, antidepressant behavior, low coordination, and motor learning in adults.


Subject(s)
Brain-Derived Neurotrophic Factor , Serotonin , Animals , Antidepressive Agents , Brain-Derived Neurotrophic Factor/metabolism , Dogs , Female , Fenfluramine , Male , Mammals/metabolism , Mice , Pregnancy , RNA , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Tryptophan Hydroxylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...