Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21267557

ABSTRACT

Pregnancy confers unique immune responses to infection and vaccination across gestation. To date, there is limited data comparing vaccine versus infection-induced nAb to COVID-19 variants in mothers during pregnancy. We analyzed paired maternal and cord plasma samples from 60 pregnant individuals. Thirty women vaccinated with mRNA vaccines were matched with 30 naturally infected women by gestational age of exposure. Neutralization activity against the five SARS-CoV-2 Spike sequences was measured by a SARS-CoV-2 pseudotyped Spike virion assay. Effective nAbs against SARS-CoV-2 were present in maternal and cord plasma after both infection and vaccination. Compared to wild type or Alpha variant Spike, these nAbs were less effective against the Kappa, Delta, and Mu Spike variants. Vaccination during the third trimester induced higher nAb levels at delivery than infection during the third trimester. In contrast, vaccine-induced nAb levels were lower at the time of delivery compared to infection during the first trimester. The transfer ratio (cord nAb level/maternal nAb level) was greatest in mothers vaccinated in the second trimester. SARS-CoV-2 vaccination or infection in pregnancy elicit effective nAbs with differing neutralization kinetics that is impacted by gestational time of exposure. Vaccine induced neutralizing activity was reduced against the Delta, Mu, and Kappa variants. Graphic abstract O_FIG O_LINKSMALLFIG WIDTH=155 HEIGHT=200 SRC="FIGDIR/small/21267557v1_ufig1.gif" ALT="Figure 1"> View larger version (34K): org.highwire.dtl.DTLVardef@4225dborg.highwire.dtl.DTLVardef@c35b5borg.highwire.dtl.DTLVardef@1a2d180org.highwire.dtl.DTLVardef@6863c2_HPS_FORMAT_FIGEXP M_FIG C_FIG

2.
Preprint in English | medRxiv | ID: ppmedrxiv-21255871

ABSTRACT

OBJECTIVETo investigate maternal immunoglobulins (IgM, IgG) response to SARS-CoV-2 infection during pregnancy and IgG transplacental transfer, to characterize neonatal antibody response to SARS-CoV-2 infection, and to longitudinally follow actively- and passively-acquired SARS-CoV-2 antibodies in infants. DESIGNA prospective observational study. SETTINGA public healthcare system in Santa Clara County (CA, USA). PARTICIPANTSWomen with SARS-CoV-2 infection during pregnancy and their infants were enrolled between April 15, 2020 and March 31, 2021. OUTCOMESSARS-CoV-2 serology analyses in the cord and maternal blood at delivery and longitudinally in infant blood between birth and 28 weeks of life. RESULTSOf 145 mothers who tested positive for SARS-CoV-2 during pregnancy, 86 had symptomatic infections: 78 with mild-moderate symptoms, and eight with severe-critical symptoms. Of the 147 newborns, two infants showed seroconversion at two weeks of age with high levels of IgM and IgG, including one premature infant with confirmed intrapartum infection. The seropositivity rates of the mothers at delivery was 65% (95% CI 0.56-0.73) and the cord blood was 58% (95% CI 0.49-0.66). IgG levels significantly correlated between the maternal and cord blood (Rs= 0.93, p< 0.0001). IgG transplacental transfer ratio was significantly higher when the first maternal positive PCR was 60-180 days before delivery compared to <60 days (1.2 vs. 0.6, p=<0.0001). Infant IgG negative conversion rate over follow-up periods of 1-4, 5-12, and 13-28 weeks were 8% (4/48), 12% (3/25), and 38% (5/13), respectively. The IgG seropositivity in the infants was positively related to IgG levels in the cord blood and persisted up to six months of age. CONCLUSIONSMaternal SARS-CoV-2 IgG is efficiently transferred across the placenta when infections occur more than two months before delivery. Maternally-derived passive immunity may protect infants up to six months of life. Neonates mount a strong antibody response to perinatal SARS-CoV-2 infection.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-21253241

ABSTRACT

BackgroundData regarding adverse events observed in the lactating mother-infant dyad and their immune response to COVID-19 mRNA vaccination during lactation are needed to inform vaccination guidelines. MethodsFrom a prospective cohort of 50 lactating individuals who received mRNA-based vaccines for COVID-19 (mRNA-1273 and BNT162b2), blood and milk samples were collected prior to first vaccination dose, immediately prior to 2nd dose, and 4-10 weeks after 2nd dose. Symptoms in mother and infant were assessed by detailed questionnaires. Anti-SARS-CoV-2 antibody levels in blood and milk were measured by Pylon 3D automated immunoassay and ELISA. In addition, vaccine-related PEGylated proteins in milk were measured by ELISA. Blood samples were collected from a subset of infants whose mothers received the vaccine during lactation (4-15 weeks after mothers 2nd dose). ResultsNo severe maternal or infant adverse events were reported in this cohort. Two mothers and two infants were diagnosed with COVID-19 during the study period. PEGylated proteins, were not found at significant levels in milk after vaccination. After vaccination, levels of anti-SARS-CoV-2 IgG and IgM significantly increased in maternal plasma and there was significant transfer of anti-SARS-CoV-2-Receptor Binding Domain (anti-RBD) IgA and IgG antibodies to milk. Milk IgA levels after the 2nd dose were negatively associated with infant age. Anti-SARS-CoV-2 IgG antibodies were not detected in the plasma of infants whose mothers were vaccinated during lactation. ConclusionsCOVID-19 mRNA vaccines generate robust immune responses in plasma and milk of lactating individuals without severe adverse events reported.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-21250137

ABSTRACT

Background. The laboratory-based methods to measure the SARS-CoV-2 humoral response include virus neutralization tests (VNTs) to determine antibody neutralization potency. For ease of use and universal applicability, surrogate virus neutralization tests (sVNTs) based on antibody-mediated blockage of molecular interactions have been proposed. Methods. A surrogate virus neutralization test established on a label-free immunoassay platform (LF-sVNT). The LF-sVNT analyzes the binding ability of RBD to ACE2 after neutralizing RBD with antibodies in serum. Results. The LF-sVNT neutralizing antibody titers (IC50) were determined from serum samples (n=246) from COVID-19 patients (n=113), as well as the IgG concentrations and the IgG avidity indices. Although there is variability in the kinetics of the IgG concentrations and neutralizing antibody titers between individuals, there is an initial rise, plateau and then in some cases a gradual decline at later timepoints after 40 days post-symptom onset. The IgG avidity indices, in the same cases, plateau after the initial rise and did not show a decline. Conclusions. The LF-sVNT can be a valuable tool in clinical laboratories for the assessment of the presence of neutralizing antibodies to COVID-19. This study is the first to provide longitudinal neutralizing antibody titers beyond 200 days post-symptom onset. Despite the decline of IgG concentration and neutralizing antibody titer, IgG avidity index increases, reaches a plateau and then remains constant up to 8 months post-infection. The decline of antibody neutralization potency can be attributed to the reduction in antibody quantity rather than the deterioration of antibody avidity, a measure of antibody quality.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20165522

ABSTRACT

The kinetics of IgG avidity maturation during SARS-CoV-2 infection was studied. The IgG avidity assay used a novel label-free immunoassay technology. It was found that there was a strong correlation between IgG avidity and days since symptom onset, and peak readings were significantly higher in severe than mild disease cases.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-20074856

ABSTRACT

BackgroundSerological tests are crucial tools for assessments of SARS-CoV-2 exposure, infection and potential immunity. Their appropriate use and interpretation require accurate assay performance data. MethodWe conducted an evaluation of 10 lateral flow assays (LFAs) and two ELISAs to detect anti-SARS-CoV-2 antibodies. The specimen set comprised 128 plasma or serum samples from 79 symptomatic SARS-CoV-2 RT-PCR-positive individuals; 108 pre-COVID-19 negative controls; and 52 recent samples from individuals who underwent respiratory viral testing but were not diagnosed with Coronavirus Disease 2019 (COVID-19). Samples were blinded and LFA results were interpreted by two independent readers, using a standardized intensity scoring system. ResultsAmong specimens from SARS-CoV-2 RT-PCR-positive individuals, the percent seropositive increased with time interval, peaking at 81.8-100.0% in samples taken >20 days after symptom onset. Test specificity ranged from 84.3-100.0% in pre-COVID-19 specimens. Specificity was higher when weak LFA bands were considered negative, but this decreased sensitivity. IgM detection was more variable than IgG, and detection was highest when IgM and IgG results were combined. Agreement between ELISAs and LFAs ranged from 75.7-94.8%. No consistent cross-reactivity was observed. ConclusionOur evaluation showed heterogeneous assay performance. Reader training is key to reliable LFA performance, and can be tailored for survey goals. Informed use of serology will require evaluations covering the full spectrum of SARS-CoV-2 infections, from asymptomatic and mild infection to severe disease, and later convalescence. Well-designed studies to elucidate the mechanisms and serological correlates of protective immunity will be crucial to guide rational clinical and public health policies.

7.
EJIFCC ; 25(2): 170-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-27683464

ABSTRACT

National and international cardiology guidelines have recommended a 1-hour turnaround time for reporting results of cardiac troponin to emergency department personnel, measured from the time of blood collection to reporting. Use of point-of-care testing (POCT) can reduce turnaround times for cardiac markers, but current devices are not as precise or sensitive as central laboratory assays. The gap is growing as manufacturers of mainframe immunoassay instruments have or will release troponin assays that are even higher than those currently available. These assays have analytical sensitivity that enables detection of nearly 100% of all healthy subjects which is not possible for current POCT assays. Use of high sensitivity troponin results in a lower value for the 99(th) percentile of a healthy population. Clinically, this enables for the detection of more cases of myocardial injury. In order to compete analytically, next generation POCT assays will to make technologic advancements, such as the use of microfluidic to better control sample delivery, nanoparticles or nanotubes to increase the surface-to-volume ratios for analytes and antibodies, and novel detection schemes such as chemiluminescence and electrochemical detectors to enhance analytical sensitivity. Multi-marker analysis using POCT is also on the horizon for tests that complement cardiac troponin.

SELECTION OF CITATIONS
SEARCH DETAIL
...