Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Braz J Phys Ther ; 19(4): 257-63, 2015.
Article in English | MEDLINE | ID: mdl-26443972

ABSTRACT

OBJECTIVE: The aim of the present study was to compare the effects of continuous versus interval aerobic exercise training on hemodynamic parameters, cardiac remodeling, and maximal exercise capacity (MEC) in chronic heart failure (CHF) rats. METHOD: Twenty-four male Wistar rats were subjected to myocardial infarction (MI) surgery. Five weeks post MI, the animals were assigned to one of three groups: sedentary group (CHF-Sed, n=8), aerobic continuous training group (CHF-ACT, n=8), and aerobic interval training group (CHF-AIT, n=8). Treadmill training was performed five times a week for 8 weeks (ACT: 50 min/day at 15 m/min and AIT: 40 min/day with 8 min of warm-up at 10 m/min and exercise at 15 m/min 4×4 min interspersed with 4×4 min at 23 m/min). MEC was evaluated pre and post exercise program. RESULTS: Left ventricular end-diastolic pressure (LVEDP), left ventricular mass/body mass ratio (LVM:BM), and total collagen volume fraction were lower in the trained groups compared with the sedentary group, but no difference was found between the trained groups. Systolic ventricular pressure (SVP) and maximum positive derivative of LV pressure (+dP/dtmax) were higher in the trained groups, but CHF-ACT showed higher +dP/dt(max) compared to CHF-AIT. Both training regimens were able to increase MEC. However, the aerobic interval training was superior for improving MEC. CONCLUSION: Aerobic training is an important intervention to improve cardiac function and remodeling and physical capacity in CHF rats. Interval training is a potential strategy to maximize the results, but exercise type and intensity are still topics to be explored.


Subject(s)
Blood Pressure/physiology , Exercise Therapy/methods , Heart Failure/physiopathology , Heart/physiology , Hemodynamics/physiology , Animals , Exercise Test , Rats , Rats, Wistar
2.
Braz. j. phys. ther. (Impr.) ; 19(4): 257-263, July-Aug. 2015. tab, ilus
Article in English | LILACS | ID: lil-761612

ABSTRACT

OBJECTIVE: The aim of the present study was to compare the effects of continuous versus interval aerobic exercise training on hemodynamic parameters, cardiac remodeling, and maximal exercise capacity (MEC) in chronic heart failure (CHF) rats.METHOD: Twenty-four male Wistar rats were subjected to myocardial infarction (MI) surgery. Five weeks post MI, the animals were assigned to one of three groups: sedentary group (CHF-Sed, n=8), aerobic continuous training group (CHF-ACT, n=8), and aerobic interval training group (CHF-AIT, n=8). Treadmill training was performed five times a week for 8 weeks (ACT: 50 min/day at 15 m/min and AIT: 40 min/day with 8 min of warm-up at 10 m/min and exercise at 15 m/min 4×4 min interspersed with 4×4 min at 23 m/min). MEC was evaluated pre and post exercise program.RESULTS: Left ventricular end-diastolic pressure (LVEDP), left ventricular mass/body mass ratio (LVM:BM), and total collagen volume fraction were lower in the trained groups compared with the sedentary group, but no difference was found between the trained groups. Systolic ventricular pressure (SVP) and maximum positive derivative of LV pressure (+dP/dtmax) were higher in the trained groups, but CHF-ACT showed higher +dP/dtmax compared to CHF-AIT. Both training regimens were able to increase MEC. However, the aerobic interval training was superior for improving MEC.CONCLUSION: Aerobic training is an important intervention to improve cardiac function and remodeling and physical capacity in CHF rats. Interval training is a potential strategy to maximize the results, but exercise type and intensity are still topics to be explored.


Subject(s)
Animals , Rats , Blood Pressure/physiology , Exercise Therapy/methods , Heart/physiology , Heart Failure/physiopathology , Hemodynamics/physiology , Rats, Wistar , Exercise Test
3.
PLoS One ; 9(10): e110317, 2014.
Article in English | MEDLINE | ID: mdl-25340545

ABSTRACT

The role of resistance training on collagen deposition, the inflammatory profile and muscle weakness in heart failure remains unclear. Therefore, this study evaluated the influence of a resistance training program on hemodynamic function, maximum strength gain, collagen deposition and inflammatory profile in chronic heart failure rats. Thirty-two male Wistar rats submitted to myocardial infarction by coronary artery ligation or sham surgery were assigned into four groups: sedentary sham (S-Sham, n = 8); trained sham (T-Sham, n = 8); sedentary chronic heart failure (S-CHF, n = 8) and trained chronic heart failure (T-CHF, n = 8). The maximum strength capacity was evaluated by the one maximum repetition test. Trained groups were submitted to an 8-week resistance training program (4 days/week, 4 sets of 10-12 repetitions/session, at 65% to 75% of one maximum repetition). After 8 weeks of the resistance training program, the T-CHF group showed lower left ventricular end diastolic pressure (P<0.001), higher left ventricular systolic pressure (P<0.05), higher systolic blood pressure (P<0.05), an improvement in the maximal positive derivative of ventricular pressure (P<0.05) and maximal negative derivative of ventricular pressure (P<0.05) when compared to the S-CHF group; no differences were observed when compared to Sham groups. In addition, resistance training was able to reduce myocardial hypertrophy (P<0.05), left ventricular total collagen volume fraction (P<0.01), IL-6 (P<0.05), and TNF-α/IL-10 ratio (P<0.05), as well as increasing IL-10 (P<0.05) in chronic heart failure rats when compared to the S-CHF group. Eight weeks of resistance training promotes an improvement of cardiac function, strength gain, collagen deposition and inflammatory profile in chronic heart failure rats.


Subject(s)
Collagen/metabolism , Heart Failure/physiopathology , Hemodynamics , Resistance Training , Animals , Blood Pressure , Body Weight , Cardiomegaly/blood , Cardiomegaly/complications , Cardiomegaly/physiopathology , Cytokines/blood , Disease Models, Animal , Heart Failure/blood , Heart Failure/complications , Heart Ventricles/pathology , Inflammation/blood , Inflammation/complications , Inflammation/pathology , Liver/pathology , Lung/pathology , Male , Myocardial Infarction/blood , Myocardial Infarction/complications , Myocardial Infarction/physiopathology , Myocardium/metabolism , Myocardium/pathology , Rats, Wistar , Survival Analysis
4.
Clinics (Sao Paulo) ; 68(6): 876-82, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23778495

ABSTRACT

OBJECTIVE: The aim of the present study was to evaluate the effect of 8 weeks of aerobic exercise training on cardiac functioning and remodeling and on the plasma levels of inflammatory cytokines in chronic heart failure rats. METHODS: Wistar rats were subjected to myocardial infarction or sham surgery and assigned to 4 groups: chronic heart failure trained (n=7), chronic heart failure sedentary (n=6), sham trained (n=8) and sham sedentary (n=8). Four weeks after the surgical procedures, the rats were subjected to aerobic training in the form of treadmill running (50 min/day, 5 times per week, 16 m/min). At the end of 8 weeks, the rats were placed under anesthesia, the hemodynamic variables were recorded and blood samples were collected. Cardiac hypertrophy was evaluated using the left ventricular weight/body weight ratio, and the collagen volume fraction was assessed using histology. RESULTS: The chronic heart failure trained group showed a reduction in left ventricular end-diastolic pressure, a lower left ventricular weight/body weight ratio and a lower collagen volume fraction compared with the chronic heart failure sedentary group. In addition, exercise training reduced the plasma levels of TNF-α and IL-6 and increased the plasma level of IL-10. CONCLUSION: An 8-week aerobic exercise training program improved the inflammatory profile and cardiac function and attenuated cardiac remodeling in chronic heart failure rats.


Subject(s)
Exercise Therapy/methods , Heart Failure/prevention & control , Inflammation Mediators/blood , Physical Conditioning, Animal/physiology , Ventricular Remodeling/physiology , Animals , Collagen/analysis , Heart Failure/blood , Heart Failure/physiopathology , Hemodynamics , Interleukin-10/blood , Interleukin-6/blood , Male , Rats , Rats, Wistar , Time Factors , Tumor Necrosis Factor-alpha/blood , Ventricular Function, Left/physiology
5.
Clinics ; 68(6): 876-882, jun. 2013. tab, graf
Article in English | LILACS | ID: lil-676949

ABSTRACT

OBJECTIVE: The aim of the present study was to evaluate the effect of 8 weeks of aerobic exercise training on cardiac functioning and remodeling and on the plasma levels of inflammatory cytokines in chronic heart failure rats. METHODS: Wistar rats were subjected to myocardial infarction or sham surgery and assigned to 4 groups: chronic heart failure trained (n = 7), chronic heart failure sedentary (n = 6), sham trained (n = 8) and sham sedentary (n = 8). Four weeks after the surgical procedures, the rats were subjected to aerobic training in the form of treadmill running (50 min/day, 5 times per week, 16 m/min). At the end of 8 weeks, the rats were placed under anesthesia, the hemodynamic variables were recorded and blood samples were collected. Cardiac hypertrophy was evaluated using the left ventricular weight/body weight ratio, and the collagen volume fraction was assessed using histology. RESULTS: The chronic heart failure trained group showed a reduction in left ventricular end-diastolic pressure, a lower left ventricular weight/body weight ratio and a lower collagen volume fraction compared with the chronic heart failure sedentary group. In addition, exercise training reduced the plasma levels of TNF-α and IL-6 and increased the plasma level of IL-10. CONCLUSION: An 8-week aerobic exercise training program improved the inflammatory profile and cardiac function and attenuated cardiac remodeling in chronic heart failure rats. .


Subject(s)
Animals , Male , Rats , Exercise Therapy/methods , Heart Failure/prevention & control , Inflammation Mediators/blood , Physical Conditioning, Animal/physiology , Ventricular Remodeling/physiology , Collagen/analysis , Hemodynamics , Heart Failure/blood , Heart Failure/physiopathology , /blood , /blood , Rats, Wistar , Time Factors , Tumor Necrosis Factor-alpha/blood , Ventricular Function, Left/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...