Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-20248582

ABSTRACT

Several studies suggest that COVID-19 may be accompanied by symptoms such as a dry cough, muscle aches, sore throat, and mild to moderate respiratory illness. The symptoms of this disease indicate the fact that COVID-19 causes noticeable negative effects on the lungs. Therefore, considering the health status of the lungs using X-rays and CT scans of the chest can significantly help diagnose COVID-19 infection. Due to the fact that most of the methods that have been proposed to COVID-19 diagnose deal with the lengthy testing time and also might give more false positive and false negative results, this paper aims to review and implement artificial intelligence (AI) image-based diagnosis methods in order to detect coronavirus infection with zero or near to zero false positives and false negatives rates. Besides the already existing AI image-based medical diagnosis method for the other well-known disease, this study aims on finding the most accurate COVID-19 detection method among AI methods such as machine learning (ML) and artificial neural network (ANN), ensemble learning (EL) methods.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20240507

ABSTRACT

Extension of SIR type models has been reported in a number of publications in mathematics community. But little is done on validation of these models to fit adequately with multiple clinical data of an infectious disease. In this paper, we introduce SEIR-PAD model to assess susceptible, exposed, infected, recovered, super-spreader, asymptomatic infected, and deceased populations. SEIR-PAD model consists of 7-set of ordinary differential equations with 8 unknown coefficients which are solved numerically in MATLAB using an optimization algorithm to fit 4-set of COVID-19 clinical data consist of cumulative populations of infected, deceased, recovered, and susceptible. Trends of COVID-19 in Trends in Gulf Cooperation Council (GCC) countries are successfully predicted using available data from outbreak until 23rd June 2020. Promising results of SEIR-PAD model provide insight into better management of COVID-19 pandemic in GCC countries.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20240515

ABSTRACT

Extension of SIR type models has been reported in a number of publications in mathematics community. But little is done on validation of these models to fit adequately with multiple clinical data of an infectious disease. In this paper, we introduce SEIR-PAD model to assess susceptible, exposed, infected, recovered, super-spreader, asymptomatic infected, and deceased populations. SEIR-PAD model consists of 7-set of ordinary differential equations with 8 unknown coefficients which are solved numerically in MATLAB using an optimization algorithm. Four set of COVID-19 clinical data consist of cumulative populations of infected, deceased, recovered, and susceptible are used from start of the outbreak until 23rd June 2020 to fit with SEIR-PAD model results. Results for trends of COVID-19 in GCC countries indicate that the disease may be terminated after 200 to 300 days from start of the outbreak depends on current measures and policies. SEIR-PAD model provides a robust and strong tool to predict trends of COVID-19 for better management and/or foreseeing effects of certain enforcing laws by governments, health organizations or policy makers.

4.
Preprint in English | medRxiv | ID: ppmedrxiv-20240564

ABSTRACT

The SIR type models are built by a set of ordinary differential equations (ODE), which are strongly initial value dependant. To fit multiple biological data with SIR type equations requires fitting coefficients of these equations by an initial guess and applying optimization methods. These coefficients are also extremely initial value-dependent. In the vast publication of these types, we hardly see, among simple to highly complicated SIR type methods, that these methods presented more than a maximum of two biological data sets. We propose a novel method that integrates an analytical solution of the infectious population using Weibull distribution function into any SIR type models. The Weibull-SIRD method has easily fitted 4 set of COVID-19 biological data simultaneously. It is demonstrated that the Weibull-SIRD method predictions for susceptible, infected, recovered, and deceased populations from COVID-19 in Kuwait and UAE are superior compared with SIRD original ODE model. The proposed method here opens doors for new deeper studying of biological dynamic systems with realistic biological data trends than providing some complicated, cumbersome mathematical methods with little insight into biological datas real physics.

5.
Preprint in English | medRxiv | ID: ppmedrxiv-20240580

ABSTRACT

On 30 July 2020, a total number of 301,530 diagnosed COVID-19 cases were reported in Iran, with 261,200 recovered and 16,569 dead. The COVID-19 pandemic started with 2 patients in Qom city in Iran on 20 February 2020. Accurate prediction of the end of the COVID-19 pandemic and the total number of populations affected is challenging. In this study, several widely used models, including Richards, Gompertz, Logistic, Ratkowsky, and SIRD models, are used to project dynamics of the COVID-19 pandemic in the future of Iran by fitting the present and the past clinical data. Iran is the only country facing a second wave of COVID-19 infections, which makes its data difficult to analyze. The present studys main contribution is to forecast the near-future of COVID-19 trends to allow non-pharmacological interventions (NPI) by public health authorities and/or government policymakers. We have divided the COVID-19 pandemic in Iran into two waves, Wave I, from February 20, 2020 to May 4, 2020, and Wave II from May 5, 2020, to the present. Two statistical methods, i.e., Pearson correlation coefficient (R) and the coefficient of determination (R2), are used to assess the accuracy of studied models. Results for Wave I Logistic, Ratkowsky, and SIRD models have correctly fitted COVID-19 data in Iran. SIRD model has fitted the first peak of infection very closely on April 6, 2020, with 34,447 cases (The actual peak day was April 7, 2020, with 30,387 active infected patients) with the re-production number R0=3.95. Results of Wave II indicate that the SIRD model has precisely fitted with the second peak of infection, which was on June 20, 2020, with 19,088 active infected cases compared with the actual peak day on June 21, 2020, with 17,644 cases. In Wave II, the re-production number R0=1.45 is reduced, indicating a lower transmission rate. We aimed to provide even a rough project future trends of COVID-19 in Iran for NPI decisions. Between 180,000 to 250,000 infected cases and a death toll of between 6,000 to 65,000 cases are expected in Wave II of COVID-19 in Iran. There is currently no analytical method to project more waves of COVID-19 beyond Wave II.

6.
Preprint in English | medRxiv | ID: ppmedrxiv-20240499

ABSTRACT

Eruption of COVID-19 patients in 215 countries worldwide have urged for robust predictive methods that can detect as early as possible size and duration of the contagious disease and also providing precision predictions. In many recent literatures reported on COVID-19, one or more essential parts of such investigation were missed. One of crucial elements for any predictive method is that such methods should fit simultaneously as many data as possible; these data could be total infected cases, daily hospitalized cases, cumulative recovered cases and deceased cases and so on. Other crucial elements include sensitivity and precision of such predictive methods on amount of data as the contagious disease evolved day by day. To show importance of these aspects, we have evaluated the standard SIRD model and a newly introduced Gaussian-SIRD model on development of COVID-19 in Kuwait. It is observed that SIRD model quickly pick up main trends of COVID-19 development; but Gaussian-SIRD model provides precise prediction at longer period of time.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-20236083

ABSTRACT

SIR model is one of the simplest methods used in prediction of endemic/pandemic outbreaks. We examined SIRD model for development of COVID-19 in Kuwait which was started on 24 February 2020 by 5 patients in Kuwait. This paper investigates sensitivity of SIRD model for development of COVID-19 in Kuwait based on duration of progressed days of data. For Kuwait, we have fitted SIRD model to COVID-19 data for 20, 40, 60, 80, 100, and 116 days of data and assessed sensitivity of the model with number of days of data. The parameters of SIRD model are obtained using an optimization algorithm (lsqcurvefit) in MATLAB. The total population of 50,000 is equally applied for all Kuwait time intervals. Results of SIRD model indicates that after 40 days the peak infectious day can be adequately predicted; althogh, error percentage from sensetivity analysis indicates that different exposed population sizes are not correctly predicted. SIRD type models are too simple to robustly capture all features of COVID-19 and more precise methods are needed to tackle nonlinear dynamics of a pandemic.

8.
Preprint in English | medRxiv | ID: ppmedrxiv-20234419

ABSTRACT

Susceptible-infectious-recovered-deceased (SIRD) model is an essential model for outbreak prediction. This paper evaluates the performance of the SIRD model for the outbreak of COVID-19 in Kuwait, which initiated on 24 February 2020 by five patients in Kuwait. This paper investigates the sensitivity of the SIRD model for the development of COVID-19 in Kuwait based on the duration of the progressed days of data. For Kuwait, we have fitted the SIRD model to COVID-19 data for 20, 40, 60, 80, 100, and 116 days of data and assessed the sensitivity of the model with the number of days of data. The parameters of the SIRD model are obtained using an optimization algorithm (lsqcurvefit) in MATLAB. The total population of 50,000 is equally applied for all Kuwait time intervals. Results of the SIRD model indicate that after 40 days, the peak infectious day can be adequately predicted. Although error percentage from sensitivity analysis suggests that different exposed population sizes are not correctly predicted. SIRD type models are too simple to robustly capture all features of COVID-19, and more precise methods are needed to tackle the correct trends of a pandemic.

9.
Preprint in English | medRxiv | ID: ppmedrxiv-20217604

ABSTRACT

An accurate outbreak prediction of COVID-19 can successfully help to get insight into the spread and consequences of infectious diseases. Recently, machine learning (ML) based prediction models have been successfully employed for the prediction of the disease outbreak. The present study aimed to engage an artificial neural network-integrated by grey wolf optimizer for COVID-19 outbreak predictions by employing the Global dataset. Training and testing processes have been performed by time-series data related to January 22 to September 15, 2020 and validation has been performed by time-series data related to September 16 to October 15, 2020. Results have been evaluated by employing mean absolute percentage error (MAPE) and correlation coefficient (r) values. ANN-GWO provided a MAPE of 6.23, 13.15 and 11.4% for training, testing and validating phases, respectively. According to the results, the developed model could successfully cope with the prediction task.

10.
Preprint in English | medRxiv | ID: ppmedrxiv-20088427

ABSTRACT

Several epidemiological models are being used around the world to project the number of infected individuals and the mortality rates of the COVID-19 outbreak. Advancing accurate prediction models is of utmost importance to take proper actions. Due to a high level of uncertainty or even lack of essential data, the standard epidemiological models have been challenged regarding the delivery of higher accuracy for long-term prediction. As an alternative to the susceptible-infected-resistant (SIR)-based models, this study proposes a hybrid machine learning approach to predict the COVID-19 and we exemplify its potential using data from Hungary. The hybrid machine learning methods of adaptive network-based fuzzy inference system (ANFIS) and multi-layered perceptron-imperialist competitive algorithm (MLP-ICA) are used to predict time series of infected individuals and mortality rate. The models predict that by late May, the outbreak and the total morality will drop substantially. The validation is performed for nine days with promising results, which confirms the model accuracy. It is expected that the model maintains its accuracy as long as no significant interruption occurs. Based on the results reported here, and due to the complex nature of the COVID-19 outbreak and variation in its behavior from nation-to-nation, this study suggests machine learning as an effective tool to model the outbreak. This paper provides an initial benchmarking to demonstrate the potential of machine learning for future research.

11.
Preprint in English | medRxiv | ID: ppmedrxiv-20070094

ABSTRACT

Several outbreak prediction models for COVID-19 are being used by officials around the world to make informed-decisions and enforce relevant control measures. Among the standard models for COVID-19 global pandemic prediction, simple epidemiological and statistical models have received more attention by authorities, and they are popular in the media. Due to a high level of uncertainty and lack of essential data, standard models have shown low accuracy for long-term prediction. Although the literature includes several attempts to address this issue, the essential generalization and robustness abilities of existing models needs to be improved. This paper presents a comparative analysis of machine learning and soft computing models to predict the COVID-19 outbreak. Among a wide range of machine learning models investigated, two models showed promising results (i.e., multi-layered perceptron, MLP, and adaptive network-based fuzzy inference system, ANFIS). Based on the results reported here, and due to the highly complex nature of the COVID-19 outbreak and variation in its behavior from nation-to-nation, this study suggests machine learning as an effective tool to model the outbreak.

SELECTION OF CITATIONS
SEARCH DETAIL
...