Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1374800, 2024.
Article in English | MEDLINE | ID: mdl-38827148

ABSTRACT

Acidophiles comprise a group of microorganisms adapted to live in acidic environments. Despite acidophiles are usually associated with an autotrophic metabolism, more than 80 microorganisms capable of utilizing organic matter have been isolated from natural and man-made environments. The ability to reduce soluble and insoluble iron compounds has been described for many of these species and may be harnessed to develop new or improved mining processes when oxidative bioleaching is ineffective. Similarly, as these microorganisms grow in highly acidic media and the chances of contamination are reduced by the low pH, they may be employed to implement robust fermentation processes. By conducting an extensive literature review, this work presents an updated view of basic aspects and technological applications in biomining, bioremediation, fermentation processes aimed at biopolymers production, microbial electrochemical systems, and the potential use of extremozymes.

2.
J Environ Manage ; 351: 119918, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154218

ABSTRACT

Clostridium autoethanogenum can to convert waste gases (CO2, CO, H2) and xylose from hydrolyzed biomass into acetate, lactate, formate, ethanol and 2,3-butanediol, being a candidate for the transformation of waste streams of lignocellulosic biorefineries. Electro-fermentation (EF) modify the pattern of traditional fermentations resulting in improved product yields as has been shown when using Clostridium strains. The aim of this work was to evaluate the influence of pH on microbial growth and product distribution during fermentation and EF of xylose by C. autoethanogenum DSM10061. Fermentation and EF were carried out in a H-type reactor at three controlled pH: 5.0, 5.5 and 5.8, and at a fixed potential of -600 mV (versus Ag/AgCl) in the EF. The experiments showed that maximum biomass concentration increased as the pH increased in fermentation and EF. In accordance with maximum biomass reached, the highest substrate conversion was observed at pH 5.8 for both systems, with 76.80 % in fermentation and 96.18 % in EF. Moreover, the highest concentrations of acetic acid (1.41 ± 0.07 g L-1) and ethanol (1.45 ± 0.15 g L-1) were obtained at the end of cultures in the EF at pH 5.8. The production of lactic and formic acid decreased by the application of the external potential regardless of the pH value, reaching the lowest productivity at pH 5.8. In contrast, the specific productivity of acetic acid and ethanol was lower in both fermentation and EF at the lowest pH. Furthermore, the presence of 0.06 g L-1 of 2,3-butanediol was only detected in EF at pH 5.8. The results revealed that EF modulated microbial metabolism, which can be explained by a possible increased generation of NADP+/NADPH cofactors, which would redirect the metabolic pathway to more reduced products.


Subject(s)
Butylene Glycols , Carbon Monoxide , Xylose , Fermentation , Xylose/metabolism , Clostridium/metabolism , Metabolic Networks and Pathways , Acetic Acid/metabolism , Ethanol , Hydrogen-Ion Concentration
3.
J Biotechnol ; 342: 1-12, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34648892

ABSTRACT

Clostridium beijerinckii population branches into metabolically diverse cell types in batch cultures. Here, we present a new kinetic model of C. beijerinckii's Acetone-Butanol-Ethanol fermentation that considers three cell types: producers of acids (acidogenic), consumer of acids and producers of solvents (solventogenic), and spores cells. The model accurately recapitulates batch culture data. Also, the model estimates cell type-specific kinetic parameters, which can be helpful to improve the operation of the ABE fermentation and give a framework to study acidogenic and solventogenic metabolic pathways. To exemplify the latter, we used a constraint-based model to study how the ABE pathways are used among acidogenic and solventogenic cell types. We found that among both cell types, glycolytic production of ATP and consumption of NAD+ varies widely during the fermentation, with their maximum production/consumption rates happening when acidogenic and solventogenic growth rates were at their highest. However, acidogenic cells use the ABE pathway to contribute with an extra 12.5% of the total production of ATP, whereas solventogenic cell types use the ABE pathway to supply more than 75% of the demand for NAD+, alternating between the production of lactate and butyrate, being both coupled to the production of NAD+.


Subject(s)
Butanols , Clostridium beijerinckii , Acetone , Clostridium , Ethanol , Fermentation
4.
Electron. j. biotechnol ; 44: 58-59, Mar. 2020. ilus
Article in English | LILACS | ID: biblio-1087710

ABSTRACT

BACKGROUND: Methanol can be effectively removed from air by biofiltration (Shareefdeen et al., 1993; Babbitt et al., 2009 [1,2]). However, formaldehyde is one of the first metabolic intermediates in the consumption of methanol in methylotrophic microorganisms (Negruta et al., 2010 [3]), and it can be released out of the cell constituting a secondary emission. RESULTS: The total removal of methanol was achieved up to input loads of 263 g m−3 h−1 and the maximum elimination capacity of the system was obtained at an empty bed residence times of 90 s and reached 330 g m−3 h−1 at an input methanol load of 414 g m−3 h−1 and 80% of removal efficiency. Formaldehyde was detected inside the biofilter when the input methanol load was above 212 g m−3 h−1 . Biomass in the filter bed was able to degrade the formaldehyde generated, but with the increase of the methanol input load, the unconsumed formaldehyde was released outside the biofilter. The maximum concentration registered at the output of the system was 3.98 g m−3 when the methanol load was 672 g m−3 h−1 in an empty bed residence times of 60 s. CONCLUSIONS: Formaldehyde is produced inside a biofilter when methanol is treated in a biofiltration system inoculated with Pichia pastoris. Biomass present in the reactor is capable of degrading the formaldehyde generated as the concentration of methanol decreases. However, high methanol loads can lead to the generation and release of formaldehyde into the environment.


Subject(s)
Pichia/chemistry , Methanol/chemistry , Formaldehyde/analysis , Volatilization , Biological Filters , Biomass , Bioreactors , Environment
5.
Electron. j. biotechnol ; 42: 1-5, Nov. 2019. tab, graf
Article in English | LILACS | ID: biblio-1087340

ABSTRACT

Background: Fermentation strategies for bioethanol production that use flocculating Saccharomyces cerevisiae yeast need to account for the mechanism by which inhibitory compounds, generated in the hydrolysis of lignocellulosic materials, are tolerated and detoxified by a yeast floc. Results: Diffusion coefficients and first-order kinetic bioconversion rate coefficients were measured for three fermentation inhibitory compounds (furfural, hydroxymethylfurfural, and vanillin) in self-aggregated flocs of S. cerevisiae NRRL Y-265. Thièle-type moduli and internal effectiveness factors were obtained by simulating a simple steady-state spherical floc model. Conclusions: The obtained values for the Thiéle moduli and internal effectiveness factors showed that the bioconversion rate of the inhibitory compounds is the dominant phenomenon over mass transfer inside the flocs.


Subject(s)
Saccharomyces cerevisiae/metabolism , Biofuels , Yeasts , Benzaldehydes , Biodegradation, Environmental , Inactivation, Metabolic , Diffusion , Flocculation , Furaldehyde/analogs & derivatives
6.
Electron. j. biotechnol ; 40: 10-16, July. 2019. tab, ilus, graf
Article in English | LILACS | ID: biblio-1053200

ABSTRACT

Background: Methanol can be effectively removed from air by biofiltration. However, formaldehyde is one of the first metabolic intermediates in the consumption of methanol in methylotrophic microorganisms, and it can be released out of the cell constituting a secondary emission. Results: The total removal of methanol was achieved up to input loads of 263 g m−3 h−1 and the maximum elimination capacity of the system was obtained at an empty bed residence times of 90 s and reached 330 g m− 3 h−1 at an input methanol load of 414 g m−3 h−1 and 80% of removal efficiency. Formaldehyde was detected inside the biofilter when the input methanol load was above 212 g m−3 h−1 . Biomass in the filter bed was able to degrade the formaldehyde generated, but with the increase of the methanol input load, the unconsumed formaldehyde was released outside the biofilter. The maximum concentration registered at the output of the system was 3.98 g m−3 when the methanol load was 672 g m−3 h−1 in an empty bed residence times of 60 s. Conclusions: Formaldehyde is produced inside a biofilter when methanol is treated in a biofiltration system inoculated with Pichia pastoris. Biomass present in the reactor is capable of degrading the formaldehyde generated as the concentration of methanol decreases. However, high methanol loads can lead to the generation and release of formaldehyde into the environment


Subject(s)
Pichia/metabolism , Methanol/metabolism , Formaldehyde/metabolism , Biomass , Air Pollutants , Environment , Filtration
7.
Chemosphere ; 226: 24-35, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30913425

ABSTRACT

Methane is one of the most important greenhouse gases emitted from natural and human activities. It is scarcely soluble in water; thus, it has a low bioavailability for microorganisms able to degrade it. In this work, the capacity of the fungus Fusarium solani to improve the solubility of methane in water and to biodegrade methane was assayed. Experiments were performed in microcosms with vermiculite as solid support and mineral media, at temperatures between 20 and 35 °C and water activities between 0.9 and 0.95, using pure cultures of F. solani and a methanotrophic consortium (Methylomicrobium album and Methylocystis sp) as a control. Methane was the only carbon and energy source. Results indicate that using thermally inactivated biomass of F. solani, decreases the partition coefficient of methane in water up to two orders of magnitude. Moreover, F. solani can degrade methane, in fact at 35 °C and the highest water activity, the methane degradation rate attained by F. solani was 300 mg m-3 h-1, identical to the biodegradation rate achieved by the consortium of methanotrophic bacteria.


Subject(s)
Biodegradation, Environmental/drug effects , Fusarium/chemistry , Methane/chemistry , Fusarium/pathogenicity
8.
Bioresour Technol ; 275: 410-415, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30605828

ABSTRACT

In this work, three Clostridium strains were tested for butanol production from Agave lechuguilla hydrolysates to select one for co-culturing. The agave hydrolysates medium was supplemented with nutrients and reducing agents to promote anaerobiosis. Clostridium acetobutylicum ATCC 824 had the highest butanol production (6.04 g/L) and was selected for further analyses. In the co-culture process, Bacillus subtilis CDBB 555 was used to deplete oxygen and achieve anaerobic conditions required for butanol production. The co-culture was prepared with C. acetobutylicum and B. subtilis without anaerobic pretreatment. Butanol production in co-culture from agave hydrolysates was compared with experiments using synthetic medium with glucose and a pure culture of C. acetobutylicum. The maximum butanol concentration obtained was 8.28 g/L in the co-cultured hydrolysate medium. Results obtained in the present work demonstrated that agave hydrolysates have the potential for butanol production using a co-culture of B. subtilis and C. acetobutylicum without anaerobic pretreatment.


Subject(s)
Agave/metabolism , Bacillus subtilis/metabolism , Butanols/metabolism , Clostridium acetobutylicum/metabolism , Anaerobiosis , Coculture Techniques , Fermentation
9.
Electron. j. biotechnol ; 33: 63-67, May. 2018. ilus, graf, tab
Article in English | LILACS | ID: biblio-1024839

ABSTRACT

Background: Trimethylamine (TMA) is the main responsible for the odor associated with rotting fish and other annoying odors generated in many industrial activities. Biofiltration has proved to be efficient for treating odorous gaseous emissions. The main objective of this work was to determine the removal capacity of TMA of a biotrickling filter inoculated with Aminobacter aminovorans and to evaluate the effect of H2S on its performance. Results: The maximumspecific growth rate ofA. aminovorans in a liquid culture was 0.15 h -1 , witha TMAto biomass yield of 0.10 (g g -1) and a specific consumption rate of 0.062 g·g-1·h-1 . The initial specific consumption rate of TMA was highly influenced by the presence of H2S in liquid culture at concentrations of 20 and 69 ppm in heading space oftheflasks.ABTF inoculatedwithA. aminovorans showedremoval efficiencieshigher than98%ina range ofloading rate of 0.2 to 8 g·m-3·h-1 at empty bed residence time (EBRT) of 85 and 180 s. No effect on the elimination capacity and efficiency was detected when H2S was added at 20 and 50 ppm to the inlet gaseous emission, though the fraction of A. aminovorans measured by qPCR in the biofilm decreased. Conclusions:Abiotrickling filter inoculated with A. aminovorans can remove efficiently the TMA in a gaseous stream. The elimination capacity of TMA can be negatively affected by H2S, but its effect is not notorious when it is forming part of a biofilm, due to its high specific consumption rate of TMA.


Subject(s)
Alphaproteobacteria/metabolism , Hydrogen Sulfide , Methylamines/metabolism , Deodorization/methods , Bioreactors , Filtration , Fishes
10.
Appl Microbiol Biotechnol ; 101(17): 6765-6777, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28685193

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) are important indoor contaminants. Their hydrophobic nature hinders the possibility of biological abatement using biofiltration. Our aim was to establish whether the use of a consortium of Fusarium solani and Rhodococcus erythropolis shows an improved performance (in terms of mineralization rate and extent) towards the degradation of formaldehyde, as a slightly polar VOC; toluene, as hydrophobic VOC; and benzo[α]pyrene (BaP) as PAH at low concentrations compared to a single-species biofilm in serum bottles with vermiculite as solid support to mimic a biofilter and to relate the possible improvements with the surface hydrophobicity and partition coefficient of the biomass at three different temperatures. Results showed that the hydrophobicity of the surface of the biofilms was affected by the hydrophobicity of the carbon source in F. solani but it did not change in R. erythropolis. Similarly, the partition coefficients of toluene and BaP in F. solani biomass (both as pure culture and consortium) show a reduction of up to 38 times compared to its value in water, whereas this reduction was only 1.5 times in presence of R. erythropolis. Despite that increments in the accumulated CO2 and its production rate were found when F. solani or the consortium was used, the mineralization extent of toluene was below 25%. Regarding BaP degradation, the higher CO2 production rates and percent yields were obtained when a consortium of F. solani and R. erythropolis was used, despite a pure culture of R. erythropolis exhibits poor mineralization of BaP.


Subject(s)
Benzo(a)pyrene/metabolism , Biodegradation, Environmental , Formaldehyde/metabolism , Fusarium/metabolism , Rhodococcus/metabolism , Toluene/metabolism , Air Pollution, Indoor/prevention & control , Biomass , Filtration/instrumentation , Microbial Consortia/physiology , Polycyclic Aromatic Hydrocarbons/metabolism , Volatile Organic Compounds/metabolism
11.
PLoS One ; 12(6): e0180074, 2017.
Article in English | MEDLINE | ID: mdl-28658270

ABSTRACT

The yeast Scheffersomyces stipitis naturally produces ethanol from xylose, however reaching high ethanol yields is strongly dependent on aeration conditions. It has been reported that changes in the availability of NAD(H/+) cofactors can improve fermentation in some microorganisms. In this work genome-scale metabolic modeling and phenotypic phase plane analysis were used to characterize metabolic response on a range of uptake rates. Sensitivity analysis was used to assess the effect of ARC on ethanol production indicating that modifying ARC by inhibiting the respiratory chain ethanol production can be improved. It was shown experimentally in batch culture using Rotenone as an inhibitor of the mitochondrial NADH dehydrogenase complex I (CINADH), increasing ethanol yield by 18%. Furthermore, trajectories for uptakes rates, specific productivity and specific growth rate were determined by modeling the batch culture, to calculate ARC associated to the addition of CINADH inhibitor. Results showed that the increment in ethanol production via respiratory inhibition is due to excess in ARC, which generates an increase in ethanol production. Thus ethanol production improvement could be predicted by a change in ARC.


Subject(s)
Fermentation/genetics , Pichia/metabolism , Batch Cell Culture Techniques/methods , Ethanol , Metabolic Flux Analysis/methods , Models, Biological , Oxidation-Reduction , Phenotype , Pichia/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Xylose/metabolism
12.
Bioresour Technol ; 236: 212-224, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28411493

ABSTRACT

The aim of this study is to analyze the techno-economic performance of process configurations for ethanol production involving solid-liquid separators and reactors in the saccharification and fermentation stage, a family of process configurations where few alternatives have been proposed. Since including these process alternatives creates a large number of possible process configurations, a framework for process synthesis and optimization is proposed. This approach is supported on kinetic models fed with experimental data and a plant-wide techno-economic model. Among 150 process configurations, 40 show an improved MESP compared to a well-documented base case (BC), almost all include solid separators and some show energy retrieved in products 32% higher compared to the BC. Moreover, 16 of them also show a lower capital investment per unit of ethanol produced per year. Several of the process configurations found in this work have not been reported in the literature.


Subject(s)
Ethanol/economics , Zea mays , Fermentation , Investments
13.
Electron. j. biotechnol ; 25: 58-63, ene. 2017. tab, graf, ilus
Article in English | LILACS | ID: biblio-1008708

ABSTRACT

Background: Sulphur-oxidizing microorganisms are widely used in the biofiltration of total reduced sulphur compounds (odorous and neurotoxic) produced by industries such as the cellulose and petrochemical industries, which include high-temperature process steps. Some hyperthermophilic microorganisms have the capability to oxidize these compounds at high temperatures (N60°C), and archaea of this group, for example, Sulfolobus metallicus, are commonly used in biofiltration technology. Results: In this study, a hyperthermophilic sulphur-oxidizing strain of archaea was isolated from a hot spring (Chillán, Chile) and designated as M1. It was identified as archaea of the genus Sulfolobus (99% homology with S. solfataricus 16S rDNA). Biofilms of this culture grown on polyethylene rings showed an elemental sulphur oxidation rate of 95.15 ± 15.39 mg S l-1 d-1, higher than the rate exhibited by the biofilm of the sulphur-oxidizing archaea S. metallicus (56.8 ± 10.91 mg l-1 d-1). Conclusions: The results suggest that the culture M1 is useful for the biofiltration of total reduced sulphur gases at high temperatures and for other biotechnological applications.


Subject(s)
Sulfides/metabolism , Archaea/metabolism , Biofilms , Oxidation-Reduction , Phylogeny , Polymerase Chain Reaction , Sulfolobus , Archaea/isolation & purification , Archaea/genetics , Polyethylene , Hot Springs/microbiology , Electrophoresis , Filtration , Extremophiles , Hot Temperature
14.
Environ Sci Pollut Res Int ; 24(33): 25702-25712, 2017 Nov.
Article in English | MEDLINE | ID: mdl-27370536

ABSTRACT

The oxidation of methane (CH4) using biofilters has been proposed as an alternative to mitigate anthropogenic greenhouse gas emissions with a low concentration of CH4 that cannot be used as a source of energy. However, conventional biofilters utilize organic packing materials that have a short lifespan, clogging problems, and are commonly inoculated with non-specific microorganisms leading to unpredictable CH4 elimination capacities (EC) and removal efficiencies (RE). The main objective of this work was to characterize the oxidation of CH4 in two biotrickling filters (BTFs) packed with polyethylene rings and inoculated with two methanotrophic bacteria, Methylomicrobium album and Methylocystis sp., in order to determine EC and CO2 production (pCO2) when using a specific inoculum. The repeatability of the results in both BTFs was determined when they operated at the same inlet load of CH4. A dynamic mathematical model that describes the CH4 abatement in the BTFs was developed and validated using mass transfer and kinetic parameters estimated independently. The results showed that EC and pCO2 of the BTFs are not identical but very similar for all the conditions tested. The use of specific inoculum has shown a faster startup and higher EC per unit area (0.019 gCH4 m-2 h-1) in comparison to most of the previous studies at the same CH4 load rate (23.2 gCH4 m-3 h-1). Global mass balance showed that the maximum reduction of CO2 equivalents was 98.5 gCO2eq m-3 h-1. The developed model satisfactorily described CH4 abatement in BTFs for a wide range of conditions.


Subject(s)
Bioreactors , Environmental Restoration and Remediation/methods , Methane/metabolism , Methylococcaceae/metabolism , Methylocystaceae/metabolism , Biodegradation, Environmental , Filtration , Greenhouse Gases/metabolism , Models, Biological , Oxidation-Reduction
15.
Bioprocess Biosyst Eng ; 39(2): 295-305, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26650720

ABSTRACT

The biological production of butanol has become an important research field and thanks to genome sequencing and annotation; genome-scale metabolic reconstructions have been developed for several Clostridium species. This work makes use of the iCAC490 model of Clostridium acetobutylicum ATCC 824 to analyze its metabolic capabilities and response to an external electron supply through a constraint-based approach using the Constraint-Based Reconstruction Analysis Toolbox. Several analyses were conducted, which included sensitivity, production envelope, and phenotypic phase planes. The model showed that the use of an external electron supply, which acts as co-reducing agent along with glucose-derived reducing power (electrofermentation), results in an increase in the butanol-specific productivity. However, a proportional increase in the butyrate uptake flux is required. Besides, the uptake of external butyrate leads to the coupling of butanol production and growth, which coincides with results reported in literature. Phenotypic phase planes showed that the reducing capacity becomes more limiting for growth at high butyrate uptake fluxes. An electron uptake flux allows the metabolism to reach the growth optimality line. Although the maximum butanol flux does not coincide with the growth optimality line, a butyrate uptake combined with an electron uptake flux would result in an increased butanol volumetric productivity, being a potential strategy to optimize the production of butanol by C. acetobutylicum ATCC 824.


Subject(s)
Clostridium acetobutylicum/metabolism , Computer Simulation , Electrons , Models, Biological
16.
Sci Total Environ ; 505: 833-43, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25461086

ABSTRACT

Gasoline is the second most consumed fuel in Chile, accounting for 34% of the total fuel consumption in transportation related activities in 2012. Chilean refineries process more than 97% of the total gasoline commercialized in the national market. When it comes to evaluating the environmental profile of a Chilean process or product, the analysis should consider the characteristics of the Chilean scenario for fuel production and use. Therefore, the identification of the environmental impacts of gasoline production turns to be very relevant for the determination of the associated environmental impacts. For this purpose, Life Cycle Assessment has been selected as a useful methodology to assess the ecological burdens derived from fuel-based systems. In this case study, five subsystems were considered under a "well-to-wheel" analysis: crude oil extraction, gasoline importation, refinery, gasoline storage and distribution/use. The distance of 1 km driven by a middle size passenger car was chosen as functional unit. Moreover, volume, economic and energy-based allocations were also considered in a further sensitivity analysis. According to the results, the main hotspots were the refining activities as well as the tailpipe emissions from car use. When detailing by impact category, climate change was mainly affected by the combustion emissions derived from the gasoline use and refining activities. Refinery was also remarkable in toxicity related categories due to heavy metals emissions. In ozone layer and mineral depletion, transport activities played an important role. Refinery was also predominant in photochemical oxidation and water depletion. In terms of terrestrial acidification and marine eutrophication, the combustion emissions from gasoline use accounted for large contributions. This study provides real inventory data for the Chilean case study and the environmental results give insight into their influence of the assessment of products and processes in the country. Moreover, they could be compared with production and distribution schemes in other regions.


Subject(s)
Environmental Monitoring , Extraction and Processing Industry/statistics & numerical data , Gasoline , Carbon Dioxide/analysis , Chile , Climate Change , Greenhouse Effect , Petroleum , Vehicle Emissions/analysis
17.
Bioresour Technol ; 177: 255-65, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25496946

ABSTRACT

Uncertainty associated to the estimated values of the parameters in a model is a key piece of information for decision makers and model users. However, this information is typically not reported or the confidence intervals are too large to be useful. A semi-mechanistic model for the enzymatic saccharification of dilute acid pretreated corn stover is proposed in this work, the model is a modification of an existing one providing a statistically significant improved fit towards a set of experimental data that includes varying initial solid loadings (10-25% w/w) and the use of the pretreatment liquor and washed solids with or without supplementation of key inhibitors. A subset of 8 out of 17 parameters was identified, showing sufficiently tight confidence intervals to be used in uncertainty propagation and model analysis, without requiring interval truncation via expert judgment.


Subject(s)
Biotechnology/methods , Cellulase/metabolism , Models, Theoretical , Waste Products , Zea mays/chemistry , Confidence Intervals , Enzymes, Immobilized/metabolism , Hydrolysis , Uncertainty
18.
PLoS One ; 9(1): e87494, 2014.
Article in English | MEDLINE | ID: mdl-24489927

ABSTRACT

Scheffersomyces stipitis is a yeast able to ferment pentoses to ethanol, unlike Saccharomyces cerevisiae, it does not present the so-called overflow phenomenon. Metabolic features characterizing the presence or not of this phenomenon have not been fully elucidated. This work proposes that genome-scale metabolic response to variations in NAD(H/(+)) availability characterizes fermentative behavior in both yeasts. Thus, differentiating features in S. stipitis and S. cerevisiae were determined analyzing growth sensitivity response to changes in available reducing capacity in relation to ethanol production capacity and overall metabolic flux span. Using genome-scale constraint-based metabolic models, phenotypic phase planes and shadow price analyses, an excess of available reducing capacity for growth was found in S. cerevisiae at every metabolic phenotype where growth is limited by oxygen uptake, while in S. stipitis this was observed only for a subset of those phenotypes. Moreover, by using flux variability analysis, an increased metabolic flux span was found in S. cerevisiae at growth limited by oxygen uptake, while in S. stipitis flux span was invariant. Therefore, each yeast can be characterized by a significantly different metabolic response and flux span when growth is limited by oxygen uptake, both features suggesting a higher metabolic flexibility in S. cerevisiae. By applying an optimization-based approach on the genome-scale models, three single reaction deletions were found to generate in S. stipitis the reducing capacity availability pattern found in S. cerevisiae, two of them correspond to reactions involved in the overflow phenomenon. These results show a close relationship between the growth sensitivity response given by the metabolic network and fermentative behavior.


Subject(s)
Fermentation , Genome, Fungal , NAD/metabolism , Saccharomyces cerevisiae/physiology , Bioreactors , Computer Simulation , Ethanol/metabolism , Models, Biological , Phenotype , Species Specificity
19.
Biotechnol Lett ; 36(1): 69-74, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24068504

ABSTRACT

Oxidation of methane by methanotrophs, Methylomicrobium album and Methylocystis sp., was measured at several initial concentrations of H2S and NH3 in the headspace of stoppered flasks, at the same initial concentration of methane as sole carbon and energy source: 15 % (v/v). No effect was observed at 0.01 % (v/v) H2S and 0.025 % (v/v) NH3 in gas phase but over 0.05 and 0.025 % (v/v), respectively, they inhibited the oxidation of methane. The effect of H2S was stronger in Methylocystis sp. and both microorganisms were similarly affected by NH3. Depending on their concentrations in gas phase, H2S and NH3 can thus affect the rate of oxidation of methane and biomass growth of both methanotrophs.


Subject(s)
Ammonia/pharmacology , Hydrogen Sulfide/pharmacology , Methane/analysis , Methane/metabolism , Methylococcaceae/metabolism , Methylocystaceae/metabolism , Ammonia/metabolism , Carbon Dioxide , Hydrogen Sulfide/metabolism , Hydrogen-Ion Concentration , Methane/chemistry , Oxidation-Reduction/drug effects
20.
Biotechnol Biofuels ; 6(1): 171, 2013 Nov 29.
Article in English | MEDLINE | ID: mdl-24286451

ABSTRACT

BACKGROUND: Despite its semi-commercial status, ethanol production from lignocellulosics presents many complexities not yet fully solved. Since the pretreatment stage has been recognized as a complex and yield-determining step, it has been extensively studied. However, economic success of the production process also requires optimization of the biochemical conversion stage. This work addresses the search of bioreactor configurations with improved residence times for continuous enzymatic saccharification and fermentation operations. Instead of analyzing each possible configuration through simulation, we apply graphical methods to optimize the residence time of reactor networks composed of steady-state reactors. Although this can be easily made for processes described by a single kinetic expression, reactions under analysis do not exhibit this feature. Hence, the attainable region method, able to handle multiple species and its reactions, was applied for continuous reactors. Additionally, the effects of the sugars contained in the pretreatment liquor over the enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) were assessed. RESULTS: We obtained candidate attainable regions for separate enzymatic hydrolysis and fermentation (SHF) and SSF operations, both fed with pretreated corn stover. Results show that, despite the complexity of the reaction networks and underlying kinetics, the reactor networks that minimize the residence time can be constructed by using plug flow reactors and continuous stirred tank reactors. Regarding the effect of soluble solids in the feed stream to the reactor network, for SHF higher glucose concentration and yield are achieved for enzymatic hydrolysis with washed solids. Similarly, for SSF, higher yields and bioethanol titers are obtained using this substrate. CONCLUSIONS: In this work, we demonstrated the capabilities of the attainable region analysis as a tool to assess the optimal reactor network with minimum residence time applied to the SHF and SSF operations for lignocellulosic ethanol production. The methodology can be readily modified to evaluate other kinetic models of different substrates, enzymes and microorganisms when available. From the obtained results, the most suitable reactor configuration considering residence time and rheological aspects is a continuous stirred tank reactor followed by a plug flow reactor (both in SSF mode) using washed solids as substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...