Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Article in English | MEDLINE | ID: mdl-38772903

ABSTRACT

Repair and regeneration of a diseased lung using stem cells or bioengineered tissues is an exciting therapeutic approach for a variety of lung diseases and critical illnesses. Over the past decade increasing evidence from preclinical models suggests that cells, which are not normally resident in the lung can be utilized to modulate immune responses after injury, but there have been challenges in translating these promising findings to the clinic. In parallel, there has been a surge in bioengineering studies investigating the use of artificial and acellular lung matrices as scaffolds for three-dimensional lung or airway regeneration, with some recent attempts of transplantation in large animal models. The combination of these studies with those involving stem cells, induced pluripotent stem cell derivatives, and/or cell therapies is a promising and rapidly developing research area. These studies have been further paralleled by significant increases in our understanding of the molecular and cellular events by which endogenous lung stem and/or progenitor cells arise during lung development and participate in normal and pathologic remodeling after lung injury. For the 2023 Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases Conference, scientific symposia were chosen to reflect the most cutting-edge advances in these fields. Sessions focused on the integration of "-omics" technologies with function, the influence of immune cells on regeneration, and the role of the extracellular matrix in regeneration. The necessity for basic science studies to enhance fundamental understanding of lung regeneration and to design innovative translational studies was reinforced throughout the conference.

2.
bioRxiv ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38585863

ABSTRACT

Alveolar epithelial type II (AT2) cell dysfunction is implicated in the pathogenesis of familial and sporadic idiopathic pulmonary fibrosis (IPF). We previously described that expression of an AT2 cell exclusive disease-associated protein isoform (SP-CI73T) in murine and patient-specific induced pluripotent stem cell (iPSC)-derived AT2 cells leads to a block in late macroautophagy and promotes time-dependent mitochondrial impairments; however, how a metabolically dysfunctional AT2 cell results in fibrosis remains elusive. Here using murine and human iPSC-derived AT2 cell models expressing SP-CI73T, we characterize the molecular mechanisms governing alterations in AT2 cell metabolism that lead to increased glycolysis, decreased mitochondrial biogenesis, disrupted fatty acid oxidation, accumulation of impaired mitochondria, and diminished AT2 cell progenitor capacity manifesting as reduced AT2 self-renewal and accumulation of transitional epithelial cells. We identify deficient AMP-kinase signaling as a key upstream signaling hub driving disease in these dysfunctional AT2 cells and augment this pathway to restore alveolar epithelial metabolic function, thus successfully alleviating lung fibrosis in vivo.

3.
Am J Respir Crit Care Med ; 209(4): 362-373, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38113442

ABSTRACT

Despite progress in elucidation of disease mechanisms, identification of risk factors, biomarker discovery, and the approval of two medications to slow lung function decline in idiopathic pulmonary fibrosis and one medication to slow lung function decline in progressive pulmonary fibrosis, pulmonary fibrosis remains a disease with a high morbidity and mortality. In recognition of the need to catalyze ongoing advances and collaboration in the field of pulmonary fibrosis, the NHLBI, the Three Lakes Foundation, and the Pulmonary Fibrosis Foundation hosted the Pulmonary Fibrosis Stakeholder Summit on November 8-9, 2022. This workshop was held virtually and was organized into three topic areas: 1) novel models and research tools to better study pulmonary fibrosis and uncover new therapies, 2) early disease risk factors and methods to improve diagnosis, and 3) innovative approaches toward clinical trial design for pulmonary fibrosis. In this workshop report, we summarize the content of the presentations and discussions, enumerating research opportunities for advancing our understanding of the pathogenesis, treatment, and outcomes of pulmonary fibrosis.


Subject(s)
Biomedical Research , Idiopathic Pulmonary Fibrosis , United States , Humans , National Heart, Lung, and Blood Institute (U.S.) , Lakes , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/therapy , Risk Factors
4.
JCI Insight ; 8(24)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-37934604

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic parenchymal lung disease characterized by repetitive alveolar cell injury, myofibroblast proliferation, and excessive extracellular matrix deposition for which unmet need persists for effective therapeutics. The bioactive eicosanoid, prostaglandin F2α, and its cognate receptor FPr (Ptgfr) are implicated as a TGF-ß1-independent signaling hub for IPF. To assess this, we leveraged our published murine PF model (IER-SftpcI73T) expressing a disease-associated missense mutation in the surfactant protein C (Sftpc) gene. Tamoxifen-treated IER-SftpcI73T mice developed an early multiphasic alveolitis and transition to spontaneous fibrotic remodeling by 28 days. IER-SftpcI73T mice crossed to a Ptgfr-null (FPr-/-) line showed attenuated weight loss and gene dosage-dependent rescue of mortality compared with FPr+/+ cohorts. IER-SftpcI73T/FPr-/- mice also showed reductions in multiple fibrotic endpoints for which administration of nintedanib was not additive. Single-cell RNA-Seq, pseudotime analysis, and in vitro assays demonstrated Ptgfr expression predominantly within adventitial fibroblasts, which were reprogrammed to an "inflammatory/transitional" cell state in a PGF2α /FPr-dependent manner. Collectively, the findings provide evidence for a role for PGF2α signaling in IPF, mechanistically identify a susceptible fibroblast subpopulation, and establish a benchmark effect size for disruption of this pathway in mitigating fibrotic lung remodeling.


Subject(s)
Dinoprost , Idiopathic Pulmonary Fibrosis , Mice , Animals , Dinoprost/metabolism , Fibroblasts/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Fibrosis , Population Dynamics
5.
bioRxiv ; 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37333249

ABSTRACT

Idiopathic Pulmonary Fibrosis (IPF) is a chronic parenchymal lung disease characterized by repetitive alveolar cell injury, myofibroblast proliferation, and excessive extracellular matrix deposition for which unmet need persists for effective therapeutics. The bioactive eicosanoid, prostaglandin F2α, and its cognate receptor FPr (Ptfgr) are implicated as a TGFß1 independent signaling hub for IPF. To assess this, we leveraged our published murine PF model (IER - SftpcI73T) expressing a disease-associated missense mutation in the surfactant protein C (Sftpc) gene. Tamoxifen treated IER-SftpcI73T mice develop an early multiphasic alveolitis and transition to spontaneous fibrotic remodeling by 28 days. IER-SftpcI73T mice crossed to a Ptgfr null (FPr-/-) line showed attenuated weight loss and gene dosage dependent rescue of mortality compared to FPr+/+ cohorts. IER-SftpcI73T/FPr-/- mice also showed reductions in multiple fibrotic endpoints for which administration of nintedanib was not additive. Single cell RNA sequencing, pseudotime analysis, and in vitro assays demonstrated Ptgfr expression predominantly within adventitial fibroblasts which were reprogrammed to an "inflammatory/transitional" cell state in a PGF2α/FPr dependent manner. Collectively, the findings provide evidence for a role for PGF2α signaling in IPF, mechanistically identify a susceptible fibroblast subpopulation, and establish a benchmark effect size for disruption of this pathway in mitigating fibrotic lung remodeling.

6.
Am J Respir Cell Mol Biol ; 68(4): 358-365, 2023 04.
Article in English | MEDLINE | ID: mdl-36473455

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic interstitial lung disease. A barrier to developing more effective therapies for IPF is the dearth of preclinical models that recapitulate the early pathobiology of this disease. Intratracheal bleomycin, the conventional preclinical murine model of IPF, fails to reproduce the intrinsic dysfunction to the alveolar epithelial type 2 cell (AEC2) that is believed to be a proximal event in the pathogenesis of IPF. Murine fibrosis models based on SFTPC (Surfactant Protein C gene) mutations identified in patients with interstitial lung disease cause activation of the AEC2 unfolded protein response and endoplasmic reticulum stress-an AEC2 dysfunction phenotype observed in IPF. Although these models achieve spontaneous fibrosis, they do so with precedent lung injury and thus are challenged to phenocopy the general clinical course of patients with IPF-gradual progressive fibrosis and loss of lung function. Here, we report a refinement of a murine Sftpc mutation model to recapitulate the clinical course, physiological impairment, parenchymal cellular composition, and biomarkers associated with IPF. This platform provides the field with an innovative model to understand IPF pathogenesis and index preclinical therapeutic candidates.


Subject(s)
Idiopathic Pulmonary Fibrosis , Pulmonary Surfactant-Associated Protein C , Animals , Mice , Alveolar Epithelial Cells/metabolism , Disease Progression , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Mutation/genetics , Pulmonary Surfactant-Associated Protein C/genetics , Pulmonary Surfactant-Associated Protein C/metabolism
7.
JCI Insight ; 8(1)2023 01 10.
Article in English | MEDLINE | ID: mdl-36454643

ABSTRACT

Dysfunction of alveolar epithelial type 2 cells (AEC2s), the facultative progenitors of lung alveoli, is implicated in pulmonary disease pathogenesis, highlighting the importance of human in vitro models. However, AEC2-like cells in culture have yet to be directly compared to their in vivo counterparts at single-cell resolution. Here, we performed head-to-head comparisons among the transcriptomes of primary (1°) adult human AEC2s, their cultured progeny, and human induced pluripotent stem cell-derived AEC2s (iAEC2s). We found each population occupied a distinct transcriptomic space with cultured AEC2s (1° and iAEC2s) exhibiting similarities to and differences from freshly purified 1° cells. Across each cell type, we found an inverse relationship between proliferative and maturation states, with preculture 1° AEC2s being most quiescent/mature and iAEC2s being most proliferative/least mature. Cultures of either type of human AEC2s did not generate detectable alveolar type 1 cells in these defined conditions; however, a subset of iAEC2s cocultured with fibroblasts acquired a transitional cell state described in mice and humans to arise during fibrosis or following injury. Hence, we provide direct comparisons of the transcriptomic programs of 1° and engineered AEC2s, 2 in vitro models that can be harnessed to study human lung health and disease.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Animals , Mice , Transcriptome , Alveolar Epithelial Cells/metabolism , Lung/pathology , Pulmonary Alveoli/pathology
8.
Proc Natl Acad Sci U S A ; 119(43): e2123187119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36252035

ABSTRACT

Disruption of alveolar type 2 cell (AEC2) protein quality control has been implicated in chronic lung diseases, including pulmonary fibrosis (PF). We previously reported the in vivo modeling of a clinical surfactant protein C (SP-C) mutation that led to AEC2 endoplasmic reticulum (ER) stress and spontaneous lung fibrosis, providing proof of concept for disruption to proteostasis as a proximal driver of PF. Using two clinical SP-C mutation models, we have now discovered that AEC2s experiencing significant ER stress lose quintessential AEC2 features and develop a reprogrammed cell state that heretofore has been seen only as a response to lung injury. Using single-cell RNA sequencing in vivo and organoid-based modeling, we show that this state arises de novo from intrinsic AEC2 dysfunction. The cell-autonomous AEC2 reprogramming can be attenuated through inhibition of inositol-requiring enzyme 1 (IRE1α) signaling as the use of an IRE1α inhibitor reduced the development of the reprogrammed cell state and also diminished AEC2-driven recruitment of granulocytes, alveolitis, and lung injury. These findings identify AEC2 proteostasis, and specifically IRE1α signaling through its major product XBP-1, as a driver of a key AEC2 phenotypic change that has been identified in lung fibrosis.


Subject(s)
Alveolar Epithelial Cells , Cellular Reprogramming , Lung Injury , Membrane Proteins , Protein Serine-Threonine Kinases , Pulmonary Fibrosis , Alveolar Epithelial Cells/metabolism , Endoplasmic Reticulum Stress , Endoribonucleases/genetics , Endoribonucleases/metabolism , Inositol/metabolism , Lung Injury/pathology , Protein Serine-Threonine Kinases/genetics , Proteostasis , Pulmonary Fibrosis/genetics , Membrane Proteins/genetics , Pulmonary Surfactant-Associated Protein C/metabolism
9.
mBio ; 13(5): e0241522, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36125275

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed over 6 million individuals worldwide and continues to spread in countries where vaccines are not yet widely available or its citizens are hesitant to become vaccinated. Therefore, it is critical to unravel the molecular mechanisms that allow SARS-CoV-2 and other coronaviruses to infect and overtake the host machinery of human cells. Coronavirus replication triggers endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR), a key host cell pathway widely believed to be essential for viral replication. We examined the master UPR sensor IRE1α kinase/RNase and its downstream transcription factor effector XBP1s, which is processed through an IRE1α-mediated mRNA splicing event, in human lung-derived cells infected with betacoronaviruses. We found that human respiratory coronavirus OC43 (HCoV-OC43), Middle East respiratory syndrome coronavirus (MERS-CoV), and murine coronavirus (MHV) all induce ER stress and strongly trigger the kinase and RNase activities of IRE1α as well as XBP1 splicing. In contrast, SARS-CoV-2 only partially activates IRE1α through autophosphorylation, but its RNase activity fails to splice XBP1. Moreover, while IRE1α was dispensable for replication in human cells for all coronaviruses tested, it was required for maximal expression of genes associated with several key cellular functions, including the interferon signaling pathway, during SARS-CoV-2 infection. Our data suggest that SARS-CoV-2 actively inhibits the RNase of autophosphorylated IRE1α, perhaps as a strategy to eliminate detection by the host immune system. IMPORTANCE SARS-CoV-2 is the third lethal respiratory coronavirus, after MERS-CoV and SARS-CoV, to emerge this century, causing millions of deaths worldwide. Other common coronaviruses such as HCoV-OC43 cause less severe respiratory disease. Thus, it is imperative to understand the similarities and differences among these viruses in how each interacts with host cells. We focused here on the inositol-requiring enzyme 1α (IRE1α) pathway, part of the host unfolded protein response to virus-induced stress. We found that while MERS-CoV and HCoV-OC43 fully activate the IRE1α kinase and RNase activities, SARS-CoV-2 only partially activates IRE1α, promoting its kinase activity but not RNase activity. Based on IRE1α-dependent gene expression changes during infection, we propose that SARS-CoV-2 prevents IRE1α RNase activation as a strategy to limit detection by the host immune system.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Animals , Mice , Humans , Endoribonucleases/genetics , Endoribonucleases/metabolism , Endoplasmic Reticulum Stress/genetics , SARS-CoV-2/genetics , Inositol , Protein Serine-Threonine Kinases/genetics , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/metabolism , Ribonucleases/genetics , Transcription Factors , RNA, Messenger , Lung/metabolism , Interferons , X-Box Binding Protein 1/genetics
10.
bioRxiv ; 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35821981

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed over 6 million individuals worldwide and continues to spread in countries where vaccines are not yet widely available, or its citizens are hesitant to become vaccinated. Therefore, it is critical to unravel the molecular mechanisms that allow SARS-CoV-2 and other coronaviruses to infect and overtake the host machinery of human cells. Coronavirus replication triggers endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR), a key host cell pathway widely believed essential for viral replication. We examined the master UPR sensor IRE1α kinase/RNase and its downstream transcription factor effector XBP1s, which is processed through an IRE1α-mediated mRNA splicing event, in human lung-derived cells infected with betacoronaviruses. We found human respiratory coronavirus OC43 (HCoV-OC43), Middle East respiratory syndrome coronavirus (MERS-CoV), and murine coronavirus (MHV) all induce ER stress and strongly trigger the kinase and RNase activities of IRE1α as well as XBP1 splicing. In contrast, SARS-CoV-2 only partially activates IRE1α through autophosphorylation, but its RNase activity fails to splice XBP1. Moreover, while IRE1α was dispensable for replication in human cells for all coronaviruses tested, it was required for maximal expression of genes associated with several key cellular functions, including the interferon signaling pathway, during SARS-CoV-2 infection. Our data suggest that SARS-CoV-2 actively inhibits the RNase of autophosphorylated IRE1α, perhaps as a strategy to eliminate detection by the host immune system. IMPORTANCE: SARS-CoV-2 is the third lethal respiratory coronavirus after MERS-CoV and SARS-CoV to emerge this century, causing millions of deaths world-wide. Other common coronaviruses such as HCoV-OC43 cause less severe respiratory disease. Thus, it is imperative to understand the similarities and differences among these viruses in how each interacts with host cells. We focused here on the inositol-requiring enzyme 1α (IRE1α) pathway, part of the host unfolded protein response to virus-induced stress. We found that while MERS-CoV and HCoV-OC43 fully activate the IRE1α kinase and RNase activities, SARS-CoV-2 only partially activates IRE1α, promoting its kinase activity but not RNase activity. Based on IRE1α-dependent gene expression changes during infection, we propose that SARS-CoV-2 prevents IRE1α RNase activation as a strategy to limit detection by the host immune system.

11.
J Clin Rheumatol ; 28(5): 257-264, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35697042

ABSTRACT

BACKGROUND/OBJECTIVE: Patients classified as interstitial pneumonia with autoimmune features (IPAF) have interstitial lung disease (ILD) and features of autoimmunity but do not fulfill criteria for connective tissue diseases (CTDs). Our goal was to identify patients classifiable as IPAF, CTD-ILD, and idiopathic pulmonary fibrosis (IPF) from a preexisting pulmonary cohort and evaluate the prognosis of patients with IPAF. METHODS: We reviewed the medical records of 456 patients from a single-center pulmonary ILD cohort whose diagnoses were previously established by a multidisciplinary panel that did not include rheumatologists. We reclassified patients as IPAF, CTD-ILD, or IPF. We compared transplant-free survival using Kaplan-Meier methods and identified prognostic factors using Cox models. RESULTS: We identified 60 patients with IPAF, 113 with CTD-ILD, and 126 with IPF. Transplant-free survival of IPAF was not statistically significantly different from that of CTD-ILD or IPF. Among IPAF patients, male sex (hazard ratio, 4.58 [1.77-11.87]) was independently associated with worse transplant-free survival. During follow-up, only 10% of IPAF patients were diagnosed with CTD-ILD, most commonly antisynthetase syndrome. CONCLUSION: Despite similar clinical characteristics, most patients with IPAF did not progress to CTD-ILD; those who did often developed antisynthetase syndrome, highlighting the critical importance of comprehensive myositis autoantibody testing in this population. As in other types of ILD, male sex may portend a worse prognosis in IPAF. The routine engagement of rheumatologists in the multidisciplinary evaluation of ILD will help ensure the accurate classification of these patients and help clarify prognostic factors.


Subject(s)
Autoimmune Diseases , Connective Tissue Diseases , Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Myositis , Autoimmune Diseases/complications , Autoimmune Diseases/diagnosis , Connective Tissue Diseases/complications , Connective Tissue Diseases/diagnosis , Humans , Idiopathic Pulmonary Fibrosis/complications , Lung Diseases, Interstitial/diagnosis , Male , Myositis/complications , Myositis/diagnosis , Prognosis
12.
Front Pharmacol ; 13: 875887, 2022.
Article in English | MEDLINE | ID: mdl-35571100

ABSTRACT

Acute inflammatory exacerbations (AIEs) represent immune-driven deteriorations of many chronic lung conditions, including COPD, asthma, and pulmonary fibrosis (PF). The first line of therapy is represented by broad-spectrum immunomodulation. Among the several inflammatory populations mobilizing during AIEs, eosinophils have been identified as promising indicators of an active inflammatory exacerbation. To better study the eosinophil-parenchymal crosstalk during AIE-PF, this work leverages a clinically relevant model of inflammatory exacerbations triggered by inducible expression of a mutation in the alveolar epithelial type 2 cell Surfactant Protein-C gene [SP-CI73T]. Unbiased single-cell sequencing analysis of controls and SP-CI73T mutants at a time coordinated with peak eosinophilia (14 days) defined heightened inflammatory activation, chemotaxis, and survival signaling (IL-6, IL-4/13, STAT3, Glucocorticoid Receptor, mTOR, and MYC) in eosinophils. To study the impact of eosinophils in inflammatory exacerbations, the SP-CI73T line was crossed with eosinophil lineage deficient mice (GATA1Δdbl) to produce the SP-CI73TGATA1KO line. Time course analysis (7-42 days) demonstrated improved lung histology, survival, and reduced inflammation in SP-CI73TGATA1KO cohorts. Spectral flow cytometry of tissue digests confirmed eosinophil depletion in GATA1KO mice and the absence of a compensatory shift in neutrophils and immature monocyte recruitment. Eosinophil deletion resulted in progressive monocyte-derived macrophage accumulation (14 days post-injury), combined with declines in CD3+CD4+ lymphocyte and B220+ B cell abundance. Histochemical analysis revealed atypical inflammatory cell activation in SP-CI73TGATA1KO mice, with reduced numbers of Arg-1+ and iNOS+ cells, but increases in tgfb1 mRNA expression in bronchoalveolar lavage cells and tissue. Dexamethasone treatment (1 mg/kg daily, i.p.) was utilized to investigate corticosteroid efficacy in highly eosinophilic exacerbations induced by mutant SP-CI73T. Dexamethasone successfully reduced total and eosinophil (CD11b+SigF+CD11c-) counts at 14 days and was linked to reduced evidence of structural damage and perivascular infiltrate. Together, these results illustrate the deleterious role of eosinophils in inflammatory events preceding lung fibrosis and demonstrate the efficacy of corticosteroid treatment in highly eosinophilic exacerbations induced by mutant SP-CI73T.

13.
Adv Mater ; 34(28): e2202992, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35522531

ABSTRACT

Epithelial cell organoids have increased opportunities to probe questions on tissue development and disease in vitro and for therapeutic cell transplantation. Despite their potential, current protocols to grow these organoids almost exclusively depend on culture within 3D Matrigel, which limits defined culture conditions, introduces animal components, and results in heterogenous organoids (i.e., shape, size, composition). Here, a method is described that relies on hyaluronic acid hydrogels for the generation and expansion of lung alveolar organoids (alveolospheres). Using synthetic hydrogels with defined chemical and physical properties, human-induced pluripotent stem cell (iPSC)-derived alveolar type 2 cells (iAT2s) self-assemble into alveolospheres and propagate in Matrigel-free conditions. By engineering predefined microcavities within these hydrogels, the heterogeneity of alveolosphere size and structure is reduced when compared to 3D culture, while maintaining the alveolar type 2 cell fate of human iAT2-derived progenitor cells. This hydrogel system is a facile and accessible system for the culture of iPSC-derived lung progenitors and the method can be expanded to the culture of primary mouse tissue derived AT2 and other epithelial progenitor and stem cell aggregates.


Subject(s)
Hydrogels , Induced Pluripotent Stem Cells , Animals , Humans , Hyaluronic Acid/metabolism , Hydrogels/chemistry , Induced Pluripotent Stem Cells/metabolism , Lung , Mice , Organoids/metabolism
15.
Respir Res ; 22(1): 273, 2021 Oct 24.
Article in English | MEDLINE | ID: mdl-34689792

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease with a significant unmet medical need. Development of transformational therapies for IPF is challenging in part to due to lack of robust predictive biomarkers of prognosis and treatment response. Importantly, circulating biomarkers of IPF are limited and none are in clinical use. METHODS: We previously reported dysregulated pathways and new disease biomarkers in advanced IPF through RNA sequencing of lung tissues from a cohort of transplant-stage IPF patients (n = 36) in comparison to normal healthy donors (n = 19) and patients with acute lung injury (n = 11). Here we performed proteomic profiling of matching plasma samples from these cohorts through the Somascan-1300 SomaLogics platform. RESULTS: Comparative analyses of lung transcriptomic and plasma proteomic signatures identified a set of 34 differentially expressed analytes (fold change (FC) ≥ ± 1.5, false discovery ratio (FDR) ≤ 0.1) in IPF samples compared to healthy controls. IPF samples showed strong enrichment of chemotaxis, tumor infiltration and mast cell migration pathways and downregulated extracellular matrix (ECM) degradation. Mucosal (CCL25 and CCL28) and Th2 (CCL17 and CCL22) chemokines were markedly upregulated in IPF and highly correlated within the subjects. The mast cell maturation chemokine, CXCL12, was also upregulated in IPF plasma (fold change 1.92, FDR 0.006) and significantly correlated (Pearson r = - 0.38, p = 0.022) to lung function (%predicted FVC), with a concomitant increase in the mast cell Tryptase, TPSB2. Markers of collagen III and VI degradation (C3M and C6M) were significantly downregulated (C3M p < 0.001 and C6M p < 0.0001 IPF vs control) and correlated, Pearson r = 0.77) in advanced IPF consistent with altered ECM homeostasis. CONCLUSIONS: Our study identifies a panel of tissue and circulating biomarkers with clinical utility in IPF that can be validated in future studies across larger cohorts.


Subject(s)
Blood Proteins/analysis , Gene Expression Profiling , Idiopathic Pulmonary Fibrosis/blood , Idiopathic Pulmonary Fibrosis/genetics , Lung/chemistry , Proteome , Proteomics , Transcriptome , Biomarkers/blood , Case-Control Studies , Humans , Idiopathic Pulmonary Fibrosis/diagnosis
16.
Cell Rep ; 36(9): 109636, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34469722

ABSTRACT

Alveolar epithelial type 2 cell (AEC2) dysfunction is implicated in the pathogenesis of adult and pediatric interstitial lung disease (ILD), including idiopathic pulmonary fibrosis (IPF); however, identification of disease-initiating mechanisms has been impeded by inability to access primary AEC2s early on. Here, we present a human in vitro model permitting investigation of epithelial-intrinsic events culminating in AEC2 dysfunction, using patient-specific induced pluripotent stem cells (iPSCs) carrying an AEC2-exclusive disease-associated variant (SFTPCI73T). Comparing syngeneic mutant versus gene-corrected iPSCs after differentiation into AEC2s (iAEC2s), we find that mutant iAEC2s accumulate large amounts of misprocessed and mistrafficked pro-SFTPC protein, similar to in vivo changes, resulting in diminished AEC2 progenitor capacity, perturbed proteostasis, altered bioenergetic programs, time-dependent metabolic reprogramming, and nuclear factor κB (NF-κB) pathway activation. Treatment of SFTPCI73T-expressing iAEC2s with hydroxychloroquine, a medication used in pediatric ILD, aggravates the observed perturbations. Thus, iAEC2s provide a patient-specific preclinical platform for modeling the epithelial-intrinsic dysfunction at ILD inception.


Subject(s)
Alveolar Epithelial Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Lung Diseases, Interstitial/genetics , Pulmonary Surfactant-Associated Protein C/genetics , Alveolar Epithelial Cells/pathology , Animals , Cell Line , Cell Proliferation , Energy Metabolism , Genetic Predisposition to Disease , Humans , Induced Pluripotent Stem Cells/pathology , Inflammation Mediators/metabolism , Lung Diseases, Interstitial/metabolism , Lung Diseases, Interstitial/pathology , Mice, Knockout , Mutation , NF-kappa B/metabolism , Phenotype , Proteostasis , Pulmonary Surfactant-Associated Protein C/metabolism , Signal Transduction
17.
Int J Mol Sci ; 22(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200296

ABSTRACT

Recent studies found that expression of NEDD4-2 is reduced in lung tissue from patients with idiopathic pulmonary fibrosis (IPF) and that the conditional deletion of Nedd4-2 in lung epithelial cells causes IPF-like disease in adult mice via multiple defects, including dysregulation of the epithelial Na+ channel (ENaC), TGFß signaling and the biosynthesis of surfactant protein-C proprotein (proSP-C). However, knowledge of the impact of congenital deletion of Nedd4-2 on the lung phenotype remains limited. In this study, we therefore determined the effects of congenital deletion of Nedd4-2 in the lung epithelial cells of neonatal doxycycline-induced triple transgenic Nedd4-2fl/fl/CCSP-rtTA2S-M2/LC1 mice, with a focus on clinical phenotype, survival, lung morphology, inflammation markers in BAL, mucin expression, ENaC function and proSP-C trafficking. We found that the congenital deletion of Nedd4-2 caused a rapidly progressive lung disease in neonatal mice that shares key features with interstitial lung diseases in children (chILD), including hypoxemia, growth failure, sterile pneumonitis, fibrotic lung remodeling and high mortality. The congenital deletion of Nedd4-2 in lung epithelial cells caused increased expression of Muc5b and mucus plugging of distal airways, increased ENaC activity and proSP-C mistrafficking. This model of congenital deletion of Nedd4-2 may support studies of the pathogenesis and preclinical development of therapies for chILD.


Subject(s)
Epithelial Cells/pathology , Lung/pathology , Nedd4 Ubiquitin Protein Ligases/physiology , Pulmonary Alveoli/pathology , Pulmonary Fibrosis/pathology , Animals , Animals, Newborn , Epithelial Cells/metabolism , Female , Inflammation Mediators/metabolism , Lung/immunology , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pulmonary Alveoli/immunology , Pulmonary Alveoli/metabolism , Pulmonary Fibrosis/etiology
18.
Int J Mol Sci ; 22(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34299227

ABSTRACT

Our previous study showed that in adult mice, conditional Nedd4-2-deficiency in club and alveolar epithelial type II (AE2) cells results in impaired mucociliary clearance, accumulation of Muc5b and progressive, terminal pulmonary fibrosis within 16 weeks. In the present study, we investigated ultrastructural alterations of the alveolar epithelium in relation to interstitial remodeling in alveolar septa as a function of disease progression. Two, eight and twelve weeks after induction of Nedd4-2 knockout, lungs were fixed and subjected to design-based stereological investigation at the light and electron microscopic level. Quantitative data did not show any abnormalities until 8 weeks compared to controls. At 12 weeks, however, volume of septal wall tissue increased while volume of acinar airspace and alveolar surface area significantly decreased. Volume and surface area of alveolar epithelial type I cells were reduced, which could not be compensated by a corresponding increase of AE2 cells. The volume of collagen fibrils in septal walls increased and was linked with an increase in blood-gas barrier thickness. A high correlation between parameters reflecting interstitial remodeling and abnormal AE2 cell ultrastructure could be established. Taken together, abnormal regeneration of the alveolar epithelium is correlated with interstitial septal wall remodeling.


Subject(s)
Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/ultrastructure , Nedd4 Ubiquitin Protein Ligases/metabolism , Airway Remodeling/physiology , Alveolar Epithelial Cells/physiology , Animals , Epithelial Cells/metabolism , Female , Fibrosis/metabolism , Fibrosis/pathology , Lung/pathology , Male , Mice , Mice, Knockout , Nedd4 Ubiquitin Protein Ligases/genetics , Pulmonary Alveoli/pathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Surfactants , Respiratory Mucosa/metabolism
19.
Am J Respir Cell Mol Biol ; 65(4): 442-460, 2021 10.
Article in English | MEDLINE | ID: mdl-34101541

ABSTRACT

Alveolar epithelial type 2 cells (AEC2s), the facultative progenitors of lung alveoli, are typically identified through the use of the canonical markers, SFTPC and ABCA3. Self-renewing AEC2-like cells have been generated from human induced pluripotent stem cells (iPSCs) through the use of knock-in SFTPC fluorochrome reporters. However, developmentally, SFTPC expression onset begins in the fetal distal lung bud tip and thus is not specific to mature AEC2s. Furthermore, SFTPC reporters appear to identify only those iPSC-derived AEC2s (iAEC2s) expressing the highest SFTPC levels. Here, we generate an ABCA3 knock-in GFP fusion reporter (ABCA3:GFP) that enables the purification of iAEC2s while allowing visualization of lamellar bodies, organelles associated with AEC2 maturation. Using an SFTPCtdTomato and ABCA3:GFP bifluorescent line for in vitro distal lung-directed differentiation, we observe later onset of ABCA3:GFP expression and broader identification of the subsequently emerging iAEC2 population based on ABCA3:GFP expression compared with SFTPCtdTomato expression. Comparing ABCA3:GFP/SFTPCtdTomato double-positive with ABCA3:GFP single-positive (SP) cells by RNA sequencing and functional studies reveals iAEC2 cellular heterogeneity with both populations functionally processing surfactant proteins but the SP cells exhibiting faster growth kinetics, increased clonogenicity, increased expression of progenitor markers, lower levels of SFTPC expression, and lower levels of AEC2 maturation markers. Over time, we observe that each population (double-positive and SP) gives rise to the other and each can serve as the parents of indefinitely self-renewing iAEC2 progeny. Our results indicate that iAEC2s are a heterogeneous population of cells with differing proliferation versus maturation properties, the majority of which can be tracked and purified using the ABCA3:GFP reporter or surrogate cell surface proteins, such as SLC34A2 and CPM.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Alveolar Epithelial Cells/cytology , Induced Pluripotent Stem Cells/cytology , Pulmonary Alveoli/cytology , Pulmonary Surfactant-Associated Protein C/metabolism , Cell Differentiation/physiology , Epithelial Cells/metabolism , Humans , Lung/metabolism , Pulmonary Surfactant-Associated Proteins/metabolism
20.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L291-L307, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34132118

ABSTRACT

ATP-binding cassette class A3 (ABCA3) is a lipid transporter that plays a critical role in pulmonary surfactant function. The substitution of valine for glutamic acid at codon 292 (E292V) produces a hypomorphic variant that accounts for a significant portion of ABCA3 mutations associated with lung disorders spanning from neonatal respiratory distress syndrome and childhood interstitial lung disease to diffuse parenchymal lung disease (DPLD) in adults including pulmonary fibrosis. The mechanisms by which this and similar ABCA3 mutations disrupt alveolar type 2 (AT2) cell homeostasis and cause DPLD are largely unclear. The present study, informed by a patient homozygous for the E292V variant, used an in vitro and a preclinical murine model to evaluate the mechanisms by which E292V expression promotes aberrant lung injury and parenchymal remodeling. Cell lines stably expressing enhanced green fluorescent protein (EGFP)-tagged ABCA3 isoforms show a functional deficiency of the ABCA3E292V variant as a lipid transporter. AT2 cells isolated from mice constitutively homozygous for ABCA3E292V demonstrate the presence of small electron-dense lamellar bodies, time-dependent alterations in macroautophagy, and induction of apoptosis. These changes in AT2 cell homeostasis are accompanied by a spontaneous lung phenotype consisting of both age-dependent inflammation and fibrillary collagen deposition in alveolar septa. Older ABCA3E292V mice exhibit increased vulnerability to exogenous lung injury by bleomycin. Collectively, these findings support the hypothesis that the ABCA3E292V variant is a susceptibility factor for lung injury through effects on surfactant deficiency and impaired AT2 cell autophagy.


Subject(s)
ATP-Binding Cassette Transporters , Alveolar Epithelial Cells , Autophagy , Gene Expression Regulation , Lung Injury , Mutation, Missense , ATP-Binding Cassette Transporters/biosynthesis , ATP-Binding Cassette Transporters/genetics , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Amino Acid Substitution , Animals , Lung Injury/genetics , Lung Injury/metabolism , Lung Injury/pathology , Mice , Mice, Mutant Strains , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Respiratory Distress Syndrome, Newborn/metabolism , Respiratory Distress Syndrome, Newborn/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...